PROMULA®

Application Development System

User's Manual and Reference

Copyright 1985-2007 Great MigrationsLLC
ALL RIGHTSRESERVED

COPYRIGHT NOTICE
for
PROMULA Application Development System

Version 9.38 Released May, 2007
Published by:

Great Migrations LLC
7453 Katesbridge Ct
Dublin, Ohio 43017

(614) 761-9816

This User's manual for the PROMULA Application Development System is the property of Great Migrations LLC. It
embodies proprietary, confidential, and trade secret information. The User's manual and the files of the PROMULA
Application Development System machine-readabl e distribution media are protected by trade secret and copyright laws.

The use of the PROMULA Application Development System is restricted as stipulated in the Great Migrations LLC
License Agreement which came with the PROMULA Application Development System product and which you completed
and returned to the Great Migrations LLC. The content of the machine-readable distribution media and the User's manual
may not be copied, reproduced, disclosed, transferred, or reduced to any electronic, machine-readable, or other form except
as specified in the License Agreement with the express written approval of Great Migrations LLC.

The unauthorized copying of any of these materialsis a violation of copyright and/or trade secret law.
DISCLAIMER OF WARRANTIESAND LIMITATIONSOF LIABILITIES

THIS USER'S MANUAL IS PROVIDED ON AN "AS IS' BASIS. EXCEPT FOR THE WARRANTY DESCRIBED IN
THE GREAT MIGRATIONS LLC LICENSE AGREEMENT, THERE ARE NO WARRANTIES EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE, AND ALL SUCH WARRANTIES ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED.

IN NO EVENT SHALL GREAT MIGRATIONS LLC BE RESPONSIBLE FOR ANY INDIRECT OR
CONSEQUENTIAL DAMAGES OR LOST PROFITS, EVEN IF GREAT MIGRATIONS LLC HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Some states do not allow the limitation or exclusion of liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

TRADEMARK

PROMULA® isaregistered trademark of Great MigrationsLLC.
DEFINITION OF PURCHASE

The definition of your particular purchase is specified in the Great Migrations LLC License Agreement which came with
the PROMULA Application Development System product and which you completed and returned to the Great Migrations
LLC. If you have any questions about your rights or obligations as a PROMULA Application Development System user or
believe that you have not received the complete PROMULA Application Development System package that you purchased,
please contact:

Great Migrations LLC
7453 Katesbridge Ct
Dublin, Ohio 43017

(614) 761-9816

Table Of

Contents

O LN I S @ T 16 L@ I 0 R 1
1.1 ORGANIZATION OF THE IMANUAL ..oviietirteieteste e teste e s teste st st et besae e st sae st ebesae st e besae e ebesee st ebesee st ebesbe e sbeseenesbeneenesbeneeneeee 1
1.2 WHAT ISPROMULA? ..ottt sttt et b e st b e £tk s e etk 4 etk e s 4Rt e b e s b e Rt e ket et e b e s b et ebe et e st s b e st et nbeneeneee 1
1.3 PROMULA LANGUAGE HIGHLIGHTS ...utiittiteete et eitestee st e stessbe s e se e saeesse e st easesatesseesbeesseasesaeesaeesaeesaeabeenseennesnsasseansenn 2

1.3.1 Total Programming ENVIFONIMENT.........ccoii ettt sttt se et b see b e st eae e e e beseesbesbesaesaeeneensenes 2
IR 0 S {0 Toi (01 =o N (o] =1 (o o PP UR SRR 2
IR I =T o (U= o[BN U1 (] A= PP SR 3
1.3.3 LANQUAGE COUISEutieuiieuteeteesteasteesteesseaeeseesaeesaeesseaseaaseaaseeaeeabeeabe e b e e aee e aeesae e oae e eRe e beambeeaseeaeeeaeeabeebeenbeebeennesanesas 3
IR T (o = ALY] (TSP UORR 3
G T = oTU 1Y = g T= T = 3
I J G R B = = =] (o SRR 3
R = o[0T g1 = o] 3
IR IS - o o= S 3
1.3.9 COMIMANG IMOUE ...ttt sttt ettt b bt s bt h e bt e st E et b bt s e e s e e bt s e e s e b et e s b e e e s e e be st e nenbe st enenns 3
IR 30 L0 I @] g o T P> 4 o0 1 1Yo L= S 4
1.3.11 CONVErSAtIONAl MOOEcueiuiiieieie ettt b et s e et e bbb e s it eae e e e b e ebesheebe e st eae e e enbesbesbesbesaesbee e ansenes 4
1.3.12 MultidimensSioNal DAt SITUCLUIES.........ciueeueeeeieierie sttt e et ree st st ae bt ae e e et e sbesbesbe s st eae e e e e e sbesbesbesaesaeeneensenes 4
1.3.13 Array OF MatriX EQUALTONS........couiiiiiiterie ittt sttt s be bt ne e b e besae s b e s et e ae e e e nbesbesbesbesaesaeeneensees 4
IR I o = LA o g IS o) LY TSP RSR 4
1.3.15 Variable Management SYSEEIMottt sttt b et ae e e b e sbesaesbe s et eae e e e besbesbesbesaesaeeneensenes 4
1.3.16 Program ManagemEnt SYSIEIM.cooeeueiee e seerteesteeteeeesaeesteesteesteseeeasesaeesaeeaseasseaseaaseesseaseesaeesbeesseesesnsesaneses 4
1.3.17 DYNAMIC SIMUIBLION 1.e.viveieeeieeeeeiesiesteste et e e e s e s ee e saesresseeseeseessestesaessesseeseeseenseneeseesseeseeseeneensenseseessesaeeneeneensenes 5
IS 10 BT 7T (o TSR 5
1.3.19 Mathematical and StatistiCal FUNCHIONS..........cooiviiiiiirie ettt 5
1.3.20 CommaNG-LiNE RECAIooueuiiiieeiiiiiese ettt ettt b e et b et e s b et n et e st st b e e enennis 5
1.3.21 MuUlti-platform PerfOrMANCEcciiiieie ettt st e et estesaestesseeae e e e eeseeseesrenneeneeneeneenes 5

2 o @ L N 2 S 6

2.1. THEPROMULA APPLICATION DEVELOPMENT SYSTEMucittteitteteauresuersseessesssesasesesssesseesseassesssssssssssssesssesssesssessssaes 6
P2 S S - T i oo (0 L OSSPSR 7
2.1.2. ThE PROMULA MaIN IMENU.......oiviuiiiirieisiisiesesiesesessestesessessessssessessssessessesessessssessensesessessesessensessssessessssessesessesseseans 8
2.1.3. Running Interactive Programs in BaAICHooiiiiiiiiieee et s 14
2.1.4. PROMULA Keyboard CONVENTIONS.........cccitiirieierie ittt eeeeseesie e saeste st ssesaeesseseessesbesaessesssansassassessessessesnsensenes 18
20 I S 1 1= o [o 19
P G T 01 = o (o ST 20

2.2. PROMULA APPLICATION PROGRAMMINGucettteneetestenestesteestestesessestesessessesessessesessestenessessenessessenessessenessessenessessenens 20
P B = = W B 1< 10T] o PO ST 21
W o 0o =0 1 1o o1 1 o O 28
pZ G T T = 1Y = o 101U = o SO 31
W S = oo A €= g1 = (oo DRSPS 37
T 01 (= o =T B L= o | o SRS 41
2.2.6. Application Programiming SUMIMIBIYcoeeeereereerereeseseeeeseesseseeseessesaesseseaseseessessesaessesssansessessessessessesasensenes 46

3. PROMULA LANGUAGE REFERENCEcocot ittt ettt ae st s s nsessensnsessenenses 47

3.1 THE PROMULA NOUNSctitiitiiatiasteesteeteetesseesee st asseaaseaseaaseaseesseesseaaseaseasssaeesaeesaeeaseaaseaaseasseasseabeesseensessessesasesans 47
G 00 150 O o 0 1 o R 48
0 2 o =S o g T Y 10 = [50
00 TG B o= o g Tl = oo 7= o 51
TN I o =S o g T - T = o (< S 51
0 IR o= o g Tl U o 1 o 53
I ISR TS o g Tl 1o o 64
N A (o === To g Il NN (100 T o ST RPRR 65
3.1.8 EXPression - REIGHONALcoi ittt ettt b e b e s ae bt e e e b e besbeebesaeebeeneaneees 66
TN L T 1 = SRRSO 67
80 1 L0 I o o o [ST SR 72

Table Of Contents

G 700 01 I T /o 73
I 0t 2 NN W00 < Tl = £ o o 75
LG TR R G T == 1= .01 (< 76
I I = 0 T LU <Y 76
I I T oo [=1 1 4 T PO U RO R PR PRRPPRPR 76
I I ST = S = (o) IR 77
Nt I S < o117 0| SO SR 78
T S TS TR 78
T I LS IS = 1< 11 < | TR 81
G I 2 0 TS o S 82
G T 2 T - o) 83
I 2 10 =Y = V= 00 = (< 83
T 2 IV = T = 1o < 84
I 2 VY 0o (o YV T T T 87
I 2SI VAT 1o (o YV Ao V= Vo o R 90
3.2 STATEMENT FORMAT L.itttttiiii i i iieittrt ittt e e et e e sbbeee e e et s e bbb aeeeeessessaa b b s seeaesesssab b b aeeessssassbasbeessess s s bbb aeeeeesseasbbbaneseessesssabarneeasas 93
3.3 COMMAS AND BLANKS. .. uttttiiiiiiiiiiiriiet et e s sesitr e e e e e st sesabbe et eassessabbsseeaasessabbsseeassssassbabseessessaas bbb besesessassbbbaeeeassesssbbrsneasas 93
B3 A I 1N = I = N T 1 RS 93
3.5 LINE CONTINUATION ...oiuuttttiieeeeiiiittrttesseessasssssssesssssassssssssssssassssssssssssssssssssssessseeessessssssseeess 94
3.6 FORMAT OF PROMULA STATEMENT DESCRIPTIONS. . uuttiiiiiiiiitttttieseieiiisssseesssssssssssssssssssssssssssssessssssssssssesssssssssssseesss 94
3.7 THE PROMULA STATEMENTS ...ccttttiiiiieiiiiittietessiessssssstsssssssissssstesssssssssssssesssssssssssssssssssamissssssesssssassssssssesssessssssseessns 95
G T A NS G O | I 11V 1 95
T NS G = I 95
TG T\ 1 T 1= 100
T L\ 1 T S = 101
375 AUDIT VARIABLE ...ttt ettt e et e et e ettt e s eaeee e s eaae e e easbeeesenseeessbaeeesasbesesanseeessnbenesannsenesannenas 101
3.7.6 BREAK PIOCEAUIc.ueiueeeetiste st stesieeaeeee e seestesbesae bt st eaea e e abesbeseeebesaeaae e e amseeeseeebeaaeeheaaeaneeasenbesbeseenbesneeneeseneas 102
3.7.7 BROWSE COMMENT ...ttt ettt e sttt e e et e e e s s ate e e s et e e e s e seesesssbeessasbesesasssesssabanessasbseesasbseessabenassnsessssnsnnas 103
3.7.8 BROWISE DIALOG......cc ottt ettt e et e sttt e s ettt e s e tte e s s aabeeessaeeesseabeessasbesesasssesssbbeessasbesesansaeessabeeassnbesesansnnas 103
B7.9 BROWISE FILE ...ttt ettt ettt e ettt e s et e e s s eab e e s s e st e e e s eabsees s baeessasbeeesssaeasssabbnessanbesessnnnnas 104
A O =] (@A o {11 Tox oo [T 104
R R 2 (01T 17 0 LU TR 106
T A = O A S I 107
R BT = @ LA s 108
T o @ VA A o I 108
R A BT = (O TAT A o I 111
R ST = (O A o] = I 112
3.7.017 BROWSE VARIABLEooeciteee ettt ettt e et e s ettt e s et e e s sate e e eaabaeesenseeessbaeeseasbeeesanseeessbeeesanntesessnnenas 112
3.7.18 BROWSE VAITADIE.......co ittt et e e s et e e s ettt e s st e e s s sbbeesseabeseseabeeessbbeessasbeeesssbaeessabenesssbesessnnnnas 113
R e T O I 7Y = 11 1T 120
B.7.20 CLEARVAINADIE ...ttt ettt ettt e ettt e s ettt e s s e bt e e s s eab e e e s eabsee s s bbeessasbeeesansaeessabeeassanbesesannnnas 121
B.7.21 CLEARWINDOW ...ttt ettt ettt e ettt e s e tae e s s aab e e e s sbeeesseabeessasbesesassseessabbeessasbesesassseessabenasasbesessannnas 123
3.7.22 [COMPUTE] EQUALIONcuviiiitiiteiie ettt sttt ettt se e te st seesbe st eae e e assaseeseeebesaeebeemeaneeseeabesbesaesbesaeeneenseneas 124
T/ T O | 125
B.7.2 DEFINE DIALOG ..ottt ettt ettt eetee ettt e e e eee e s et e e s et e e s ssaeeeseaaeeseasbasesanseeessasaeeesasseeesanseeessbenesannsesesannenas 133
T2 T B 1= N e 137
3.7.26 DEFINE FUNCTIONottt eeee ettt e e et e s ettee e s esteeesessaeeessaaeessanbasesanseeessbaeeesasbeeesanseeessbenesasnsesessnnenas 139
R A] = N I 1 - 1 143
T T B 1 N Y=\ 144
3.7.29 DEFINE PARAMETER ... cetee ettt ettt e e ettt e s et e e e s s abe e s s et e e e s eabeeessabaeessasbeesssabaeessabenassnbesssannnnas 152
3.7.30 DEFINE PROCEDUREottt ettt ettt e ettt e e st e s s et e e e s e be e e s s bae e s s sbeesssabaeessbbeasssbessssnannas 155
3.7.31 DEFINE PROGRAM ... utiii ittt ettt ettt e e ettt e s et e e e s st ee e s s beessssabeessasbesesaseesssbasessasbsessassseessbeeassssessssasnnas 159
3.7.32 DEFINE RELATIONtii ettt ee sttt e et e e ettt e s s ettt s s eaaeasssabeessasbesesaasesessabaeessasbseessssseessabbnasssbessssnnnnas 160
3.7.33 DEFINE SEGMENT ... ttieiicttie ettt ee e et e e s et ee s s s aae e s s et e e e s sbeeessssbeessasbesesaassasssabbeessanbessssssaeessabeeasssbesessnsnnas 163
TR 7 B]l NS o TR 165
3.7.35 DEFINE SYSTEM......oo it ceie ettt e ettt e ettt e s et e e s et e e s eaeeeeseaaeeseasbeeesanseeessasaeeeeasbeeesanseeesabenesansenesannneas 169

Table Of Contents

3.7.36 DEFINE TABLE ..ottt R et r R een e nnen e nnen s 171
3.7.37 DEFINE VARIABLE.......oco ottt ettt n e r e ner e nnen s 174
3.7.38 DEFINE WINDOWoctiitiirmireinesreiese et st res e n st e s s et r s e e st ren e ren e e ner e e nrene s 178
3.7.39 DO CORRELATEeitttitetettseste sttt st se bt se bt beb e sebe st sesbeb e e b e be e s b e ke e s A e b e e e s b e b e e s b e bt et e b et e e b e b et s beb e e sbebenis 181
3.7.40 DO DESCRIBE........couititrirteitririetse ettt st i e bt be ke se b sese b b e £ b e b e e s b ek e £ b e bt e e s b e b e e s b e bt e s b ek et sb e b e et bt e e neebenis 183
3.7.41 DO DIRECTORY.....ccuitttrerteutrertetaestesesestesesestesesesaesesssbasasessesesesbesesssseseassbebe s sseseaesbebensseese e sbebe e sbebe st sbebenesaasanis 186
BT7.42 DO Il bbb £ b b £ AR e bR £ bR £ b b e e AR e bR e e bRt b b e e e b 187
3743 DO I ettt bbb e bbb e £ R £ AR £ Ao Re £ A e R e £ AR e E ke e A e R e bR e e bRt et b e e e b 188
3744 DO IF END ..ottt sttt be bttt b b e £ s b b £ £ R e £ s E e b e £ b e R e e £ e b e b e e e A e b et b b et bRt et b et e e e b 190
3.7.45 DO IF ERROR......coctieiteireeteetseste ettt s et e Rt e et E R r st rer e e n e ner e nren s 192
3746 DO IF ESCAPE ..ottt ettt st R et e et R Rt R et r R e e R ner e 193
STAT DO I HELP ..ottt R et e st n e nnen s 194
3.7.48 DO IF KEYPRESS........cctiititimiretnes ettt s et e bt b e e st rer e een et e n e nnen s 195
3749 DO TF NULL ..ottt et R e e st rer et e st nner e nrer s 197
3.7.50 DO INVERT ...ttt et es et R et E bRt E R e Rt n e r et s r s et ner e e nner s 198
3.7.51 DO LSOLVE ...ttt sttt sttt etk et et b b se bt s £ s b b e £ bR e e b ek e e s b e b e e e s b ek e e b e b et bk e e b e b et st et e e b ebenis 200
7.52 [DO PIrOCEAUN ..ottt ettt sttt et eae et tesbese e ebesaeeae e e aaseseesbeebe s aeeh e e aeeaeeseeabeebesheebeeaeaneeeasbenbesaesbeaneenseneans 202
3.7.53 DO REGRESS........coitititrirteitrtrie et steie et e s bt se st e et b eb e s e b e st se s b e b e £ A e b e e e b e b e b s b e bt e e s b ek e e s b e b et s b ek e e s b e bt aesbeb e e sbebanis 203
7.5 DO SEL...eeiuiiteereetee ettt b e b b e b e bk e AR £ SRR e £ AR e A e R e £ R e R e e A eb e e ARt eE b e b e e bR et bt e e e b 206
3.7.55 DO UNTIL cuttiieeteuerisiee sttt sttt ettt se st b se et e b b se b st s £ s bk e e £ e b e e b e b e £ b e b e e e e b ek e e s b e b et e b ek e e e b e b et s b et e e neebanis 207
B7.56 DO WHILE ..ottt ekt b bt £ bR e E e b e e b e b e e e e b ek e e s b e b et bk e e e b e b et s bt e e e ebenis 208
YA = T 117 01U TSP SRS 209
3.7.58 EDIT TABLE ..ottt R st ren et e st ner e 210
3.7.59 EDIT VANTADIE. ... ettt r et 211
B7.80 END ...ttt R R R R e R R e Rt R R R R e r e n s 217
3.7.61 END PROGRAMccoitiiriitciiriiteine sttt s et s et e b e e st r R e e st rer e e e n e ner e e nren s 218
3.7.62 END SEGIMENT ..ottt ettt sttt e bt b ek se et se s b e b e e b e bt e b ke e b e b e ee s b ek e e e b e bt e s b ek et eb e b et sb et e e seebanis 219
BL7.83 LEVEL ...ttt etk £ e H b £ AR AR £ AR £ A ke e AR e bR e e bRt bt e e e b 220
B7.84 OPEN Il@ ..tttk b b e e bR e b b e £ bR e b ke e A e Rt b b e e bRt et b b e e e b 221
3.7.65 OPEN SEGMENT ...ttt sttt i e ettt se et e s b b e £ b e b e e s b e b e e s b e b e e e s b e b e e s b e bt et s b et et sb e b et s b et e e sberanis 223
3.7.66 OPEN WINDOWcuiuiiririeitrisieesesteie st te e stesesesae e sesbebasesse st sesbebe e beseaesbebe e see bt aesbeb e e s b ebeat s b ek e e sbebe e sbebe e sbenanas 224
B 787 PLOT .ttt bt bbb e bRt e bk e AR £ SRR £ R Re R SR e R e £ R e R eSS E e b e e A e Rt eE bR e e bRt e b b e et bens 225
B7.88 RATE ...ttt R e R R R R R R R R R R R R r e r s 231
3.7.69 READ DISK ..ottt sttt a et es et e bRt e e R e R R Rt R R Rt r e nr s 232
3770 READ I8ttt R R R Rt 233
3771 READ FUNCHION. ...ttt ettt R R e st r e e r e ner e nren s 235
B.7.72 READ IMENU ..ttt s s e es e et s R R e R et E Rt e R Rt n R R e e e R et e e R e e e r st e rer e e nren s 236
3.7.73 READ SEGMENT ..ottt R et e et r R e e st e R e e e n et ner e nnen s 237
S7.T4 READ SEL ...ttt sttt sttt e bttt et b e se e e hese b e b e e e b e R e e £ e b e b e £ A e R e £ A e R e £ SR e R e £ b e b e e A e R et E b e e bRt e b b e e e b 237
3.7.75 READ VALUE SEOIMENLcuiuiiiteiestete sttt sttt et sesbebesessesesesbesesssbese st sbebesssseseassbebe e sbese st sbebenssbebenssbebenssensanes 240
3.7.76 READ VAINADIE ...ttt ettt bt bt h e et et e et sh e e bt e bt e heeaeene e e e nbenbeseesbeeneeneesenean 241
I = =\ D (Y= T T= o] =) SO PRR S 244
778 RUN ...ttt bttt b ek e b bt s £ b e b e ee £ b e £ e b b e £ £ oA e e £ S b e b e £ b e R e £ e A e b e e e A e R e eE e b e b e e bR et b b e e e b ens 246
3.7.79 RUN COMMANDoouttreiteitrmsretresresesr et se s se s res s s s e s s ae e e R e e se s ae s s eR e e s e e s et s e s e e neer e e nrer e e nrenens 246
3.7.80 RUN COMPILERcotiiieeteiimseine sttt e s e e st r e een et nen e nnen s 248
B.7.8L RUN DOS..... oottt s et R e Rt R Rt R Rt E R e e R et e e r e rer e ner e nrer s 249
3.7.82 RUN EDITOR.... ettt sttt e et e R e e st eer et e s e nen e nren s 249
3.7.83 RUN PROGRAMcoitiiriitiiirmireine sttt res e aes st s st e b e e b e e b e e st per e e r e ner e nnen s 250
3.7.84 RUN SOURCE.......coiitiireiteiiresreine ettt e et e R e st rer e e n e ner e e nrer s 251
3.7.85 SELECT ENTRY ...ouiiititieetettrtsie ettt sttt et et b ek e bt s e b b e £ b bt e b e ke £ s b e b e e e s b e b e e b e bt e s b ek et e b e be e sbeb e e sbebanis 251
B.7.88 SELECT FIELD.....c.couititieeteitiesie ettt sttt etttk st b et b b e e bt e b b e b e bt b b et b bttt e e b b 253
B7.87 SELECT il ittt etttk e b bbbt e bR e bR £ bR £ A bt b b et bRt b b e e b 254
3.7.88 SELECT INQITECL......cuiteueieeteieristeesesteie sttt sttt et et b et se b b e e b e b et b ek e e b e be e e s b e b e e s b e bt e s b ek e e b e b et sbeb e e nbebanis 257
3.7.89 SELECT MENU .ttt ittt ettt sttt e bt b b e b et s £ s b e b e £ £ e b e e b b e e e b e b e e e s b ek e e b e b et s b ek e e sb e b e et s beb e e seebanis 258
3.7.90 SELECT OPtION.....uiutiuiteierirteierisie ettt sttt se bt se et bt se bt se b b e e b e bt e s b e b e e b e bt ee s b e b e e s b e b et s b ek e e sb e b e ne bt e e b ebanis 259
3.7.91 SELECT PULLDOWN......ccuitiiitetre sttt s et n et n e n et ner e e ene s 267

Table Of Contents

3.7.92 SELECT RELATION ...cuiiiiiitirietertineettsie sttt es et se st e et sbe e s besse st sb et e s s bese s e b et e s e ebe st enenb e s enesbesenenbensenennas 269
S I (O = SO RTTR 271
A 7S I O S o RSP RPR 272
LS I IO = ST TRSO 274
3.7.96 SELECT VARIABLEo oottt et sttt et e st et e se st st ese e b et ene e b et enesseseneaseneenennis 275
S @ = TP 277
e S] 0 TSRS 280
3.7.99 STOP PROMULAL.......ooottietiitisietisteste st stesestesaeses e ssesessesseseasessesessessese st e sesessesseseesesseseabesseneesessanessesanensensenensin 280
T 100 T I TSRS 281
3.7.101 WRITE COMMENT ..ottt st este sttt e et sb et s st et b et ebe b e b e st b e b e s e eb e s e eneeb e st enesbe b enenbentenennas 281
37102 WRITE DISK ...eitiieiiiteietestesee sttt sttt ettt be bt b e st st b e e st s b et e bt b £ e Rt b e st e s e b et e st e b et e st b e b e nenbe st et nns 282
A L0 T VLY I 1 SRR 283
T 10 V1Y I 0 Vo ' o SRS 285
3.7.105 WWRITE MENU....ttitieetertieetestesee st seesesteseesesbesee st s beseebessese e st sbesees e e b e seesesb e s ese b e e e ae e b e st e s e e b e b en e nb e e enenbeneenenbeneenennan 286
37106 WWRITE SEL....eieetiitiieteitiree sttt sttt sttt b et s et e st b e e e st e b e e b b e e e Rt e bt £ e st e bt e e s e e b e b e st b e e e ne b et enenbe st e nenan 287
3.7.107 WRITE TABLE ..ottt sttt ettt e be st ese b e seese s b et ese b et e se e b e et ese e b e st aseas e s eneese s enenseneenennin 288
A 10 BV B I (- ST TRRS 289
B.7.109 WRITE TEXT ...uiitiiieiiitisietesteseesestestesesteseesessessesessessesessessasessessesessessesessessasessessessssessasensessesessensesessessensnsessensnses 292
3.7.110 WRITE VALUE SEQMENL....cctiiteiiitiriesirtiseesestessesessessesessessesessessesessessesessessessssessessssessesessessensssessessssessessssessessases 293
T R VY I = T T o] ST 294
4. PROGRAM AND DATA MANAGEMENT ..ottt s e nse s sessenenns 298
4.1 DATABASE MANAGEMENT IN PROMULAooitiitiietre sttt sttt sttt sttt e eb et neenens 298
4.1.1 Program 1 — Create a'NeW' DatabDase..........cccvivririeiiiirieesise s sesteseesee e sae e s resseesee e eseeseessessesneeseenesnsenes 299
4.1.2 Program 2 — ACCESS aNn 'Old' DAtAhASE.cccererierieriietireeesesesesesteseeseeseesae e saessesseeseeseesessessessesseesesesnsenes 300
4.1.3 More About Database MaNAQEMENT...........cceiererereieeeereeesesre e sresresseeseesees e seesaessesseeseeseesessessessesseesenseensenes 311
4.2 PROGRAM MANAGEMENT IN PROMULAottt sttt sttt ettt st sttt b e sttt e et e sbe e ebesbeneenens 313
4.2.1 A Segmented Programwith @ Datahase.........cccoceierierieiirieie ettt se e e e b sse e enee s 313
4.2.2 Multi-Segment Programsin Separate DiSK FilES ..ot 317

5. CONFIGURING PROMULA ..ottt sttt sttt sttt ste st st stesaetestasaesestesaesesaesaesessaseatesseseesestessesestenensessensesessenensens 321
5.1 USING THE GRAPHICS CONFIGURATION PROGRAMcuuitutiiteaiteeiterteseeseesueasseasseasesssesssassesssesssesssssasesssssseessesssesnsenns 321
5.1.1 Selecting GraphiCS CONfIQUIALTONSccuiiuiriiierieiie ettt e bbb e e e e e besbesbeeneeneeneeneas 321
5.1.2 Managing Custom GraphicS CONfIQUIAtiONS...........ceerieiieieierie ettt sae e s ae b e se e e 324
5.1.3 TeSting PROMULA GFaphiCS......ucieiuieeeierieriestesesseesesseeseeseessessessessesseessesssssssssssessesssssesssssssssessessessessessessssnsenses 328

Promula Application Development System User's Manual

1. INTRODUCTION

1.1 Organization of the Manual
This manual is divided into five chapters:

CHAPTER 1 introduces you to the PROMULA system'’s features, capabilities, and requirements and tells you how
to install and run PROMULA on your personal computer.

CHAPTER 2 is an introduction to the PROMULA programming environment and covers some of the language
fundamentals in the context of a simple example.

CHAPTER 3 isthe reference chapter for the PROMULA language.
It describes, in alphabetical order, the nouns and verbs of the language. The nouns are the building
blocks, the information elements, of the language. The verbs are the commands of the language;
they tell PROMULA to perform various operations on the nouns.

CHAPTER 4 contains details and examples of database management and program management in PROMULA.

CHAPTERS describes the use of the PROMULA configuration program that may be used to set up the physical
configuration of PROMULA's graphics modes.

1.2 What isPROMULA?

PROMULA (processor of multiple language applications) is an application development tool for large-scale analytical
applications. It is a general-purpose, high-level programming language with built-in data management, modeling, report
generation, graphics, and screen management (menus and windows) capabilities. It is the ideal development tool for those
who have outgrown the spreadsheets but do not want to develop applications in a third generation programming language
(such as FORTRAN, PASCAL, BASIC, or C).

Though its intellectual history goes back to the late ‘60's on mainframes, PROMULA was originally developed on PCsin
the early 80's as a high-level generalization of FORTRAN designed to take explicit advantage of the FORTRAN data
structure (multidimensional arrays of primarily numeric, homogeneous data). It is a portable C program and offers the same
character-based functionality on a number of platforms. PC DOS and DOS Extended, 386/486 UNIX, RS/6000 AlX,
VAX/VMS, and Apple Macintosh.
As an application development tool, PROMULA supports the following functions:

- Data management (organize and selectively manipulate data)

- Data analysis (establish relationships in the data using an extensive library of mathematical and statistical
functions)

- Modeling (smulate a problem and possible solutions to it)
- "What if" analysis (compare alternative decisions about the problem)
- Report generation (display resultsin report form)

- Graphics (display resultsin plotted form)

Promula Application Development System User's Manual

- Menu management (prepare pick, pop-up and data menus for application prototyping, program control, data
entry, data editing, and data display in a character-based user interface)

- Window management (create applications with attractive user interfaces using windows)
- Equation solving (solve systems of simultaneous eguations)

PROMULA's high-level, problem-oriented programming language is particularly suited for applications — as opposed to
systems — programmers. It is a highly productive, and elegant, notation for developing analytical, decision-support, or
simulation applicationsin all kinds of disciplines: business, engineering, or the sciences. PROMULA programs are easier to
write, use, verify, maintain, and document than programs written in spreadsheets or third-generation languages.

In PROMULA, a "database" is a collection of variables. The source of the information in the database may be raw user
input; or it may be calculated by PROMULA itself; or it may be produced by an independent applications program written
in a traditional programming language (such as FORTRAN) and processed by one of the PROMULA compilers or
trandators (such asthe PROMULA FORTRAN Compiler or the FORTRAN to C Trandlator).

Used in tandem with the PROMULA FORTRAN Compiler, PROMULA is also an attractive tool for upgrading the user
interfaces of existing FORTRAN applications. PROMULA can deal directly with the information content of programs
written in FORTRAN, without having to re-engineer or re-write such programs. Typically, FORTRAN programs are
computational engines, efficient in "crunching" numeric data but lacking in the area of "user friendliness." With
PROMULA, you can add a friendly user interface shell "on top" of a FORTRAN program, without having to change the
FORTRAN program code by hand. This is done by an automatic restructuring process, done by the PROMULA
FORTRAN Compiler, which involves the separation of a database from the computations of the program and the
management of that database by PROMULA. In this context, a PROMULA database is a collection of FORTRAN
variables — usually in the form of multidimensional arrays — which are manipulated by the FORTRAN computations on
the one hand but can also be used independently by PROMULA for other operations (data input, data edit, report
generation, graphics, etc.).

PROMULA is atransition bridge from third- to fourth-generation approaches in applications development. Because of its

powerful programming capabilities, it is a superior aternative to using spreadsheets or pure database managers in large
scale applications devel opment.

1.3 PROMULA Language Highlights

1.3.1 Total Programming Environment

You can develop complete turnkey applications with PROMULA. The system is designed to capitalize on existing
applications written in a variety of languages and to minimize programming time in developing new applications.

PROMULA islargely self-contained with its own screen editor, language compiler, and operating system interface.

1.3.1 Structured Notation

PROMULA is a structured language especially useful for developing applications quickly. Its elegant notation, structured
concepts and built-in functions will help minimize the time required to develop serious, mainframe-size applications on
your desktop computer.

For you, the problem solver, this means that PROMULA is easier to learn, easier to use and apply in problem solving, and,
thus, faster in producing results. In problem solving, the choice of the right notation is almost half the solution.

Promula Application Development System User's Manual

PROMULA programs are easy to write and maintain because PROMULA's English-like notation and logical constructs
make them almost self-documented.

1.3.2 Language Tutorial

Thisreference aid is an on-line, menu-driven tutorial that allows you to obtain information about PROMULA while you are
programming or using an application.

1.3.3 Language Course

This learning aid is a series of PROMULA source codes designed to demonstrate the PROMULA language constructs
(nouns) and the PROMULA commands (verbs).

1.3.4 Tutorial Writer

A tutorial writer lets you create your own menu-driven, application-specific tutorials by simply typing them in. It converts
whole books or reports into on-line, menu-driven tutorials and/or context-specific on-line help for your applications.

1.3.5 Menu Manager

PROMULA's menu manager prepares pick and data menus for "user friendly" applications. Menu preparation is as easy as
writing the menus on the screen.

1.3.6 Data Editor

A full-screen data editor facilitates data entry and update. Using techniques similar to those found in spreadsheet programs,
PROMULA lets you browse through the "pages" of multidimensional arrays to change their values.

1.3.7 Report Generator

The WRITE commands of the language let you display information in avariety of report formats.

1.3.8 Graphics

PROMULA supports business graphics (point plots, x-y plots, bar plots, etc.) for both monochrome and color display
monitors as well as a variety of printers and plotters. It is even possible to capture plotted displays on disk. High resolution
color graphics are available for EGA and VGA monitors.

1.3.9 Command Mode

In command or direct mode, PROMULA accepts a statement, converts it to executable instructions which are executed by
the computer, then proceeds to the next statement.

Y ou can interrupt a program dialogue, perform local operations in command mode, and return to the same place you left the
program. Not only is this a very useful debugging feature, but it also adds flexibility to your applications and greatly
increases the accessibility of the data and results. You can use PROMULA to generate reports and graphics or do
calculations with the data of your application without having to alter and recompile the program code.

Promula Application Development System User's Manual

1.3.10 Compilation Mode
Inindirect, or compilation mode, PROMULA compiles a group of statements as a procedure or a program that can be run
later. A procedure can be run by other procedures, including itself.

1.3.11 Conversational Mode

You can interact with a PROMULA program either in command mode or by responding to conversational prompts and
menus. Conversational prompts and menus help you make it easy for others to use your program.

1.3.12 Multidimensional Data Structures

Unlike the two-dimensional view of spreadsheets, PROMULA supports multidimensional data structures. Data arrays in
PROMULA can have up to ten dimensions, making it easy to define and manipulate highly structured information. Many
PROMULA statements have the capability to manipulate multidimensional variables implicitly, leading to great economies
of notation.

Theinformation of aPROMULA program is structured into variables and sets. Variables are multidimensional structures of
information constructed from and subscripted by sets. Variables store the information and sets define the structure of
variables. PROMULA variables can be as large as your disk space allows.

1.3.13 Array or Matrix Equations

PROMULA equations are written in standard algebraic notation. The eguation operands may be scalars, vectors or
multidimensional arrays. Implicit and dummy subscripting allows a condensed notation for array equations. This feature is
comparable to asimilar capability of the APL language.

1.3.14 Equation Solver

PROMULA's equation solver gives you solutions to systems of simultaneous equations, both linear and nonlinear.

1.3.15 Variable Management System

In PROMULA, a program is information, not just a computational box. In addition to computations, each PROMULA
program has a database. The database contains the input and output variables of the program as well as other supporting
information. You can use the program database independently of the program code, and even interrupt a running program
to work with its database.

In addition to sequential access text files and direct access binary files, PROMULA supports a unique variable management
system. This is a multidimensional array management system that is ideal for managing the information usually stored in
program variables.

PROMULA is different from other DBMS systems, which have limited command languages. PROMULA is a powerful,

fully-featured applications programming language, and it offers you full flexibility in analyzing and using the information
in your databases.

1.3.16 Program Management System

PROMULA has a program manager to help you handle large, mainframe-size programs.

Promula Application Development System User's Manual

The source code of a PROMULA application can be broken into separate parts, compiled independently, and then united
and used as a smoothly integrated system. This capability is most useful for the implementation of applications with
extensive memory reguirements.

If your variables are too large or there are too many for your work space, you can store them on disk. PROMULA's variable
manager |ets you bring only what you need into your work space.

1.3.17 Dynamic Simulation

PROMULA has severa features which facilitate the implementation of dynamic simulation applications. You can develop
system dynamics models — models of systems whose variables interact with each other continuously as they evolve over
time.

1.3.18 Windows

PROMULA's powerful windowing commands allow you to modify the appearance of the screen to create professional-
looking and user-friendly applications. Custom-designed help screens, popup menus, and flexible color control will
improve the appearance and usability of your programs.

1.3.19 Mathematical and Statistical Functions

PROMULA supports a library of mathematical and statistical functions as well as a number of array (matrix) operations,
such as summation, product, minimum/maximum, sorting, etc.

1.3.20 Command-Line Recall

A buffer stores all commands entered at the keyboard so that they may easily be recalled for modification and reentry. This
feature greatly enhances the utility of PROMULA's Command Mode and its Text and Data Editors.

1.3.21 Multi-platform Performance

PROMULA runs on most of the major computer platforms including IBM/MSDOS, VAX/VMS, Apple Macintosh,

IBM/AIX, SUN/UNIX, IBM/TSO, and platforms supporting the X Window System. Y our PROMULA applications can be
used, without modification, wherever PROMULA runs.

Promula Application Development System User's Manual

2. PROMULA BASICS

This chapter is intended to introduce computer users with little programming experience and no familiarity with
PROMULA to the basics of the PROMULA language and the PROMULA Application Development System. The first part
of the chapter illustrates how to use the PROMULA application development shell to create and use applications; the
second part of the chapter covers the fundamental s of the PROMULA language in the context of a simple example.

2.1. The PROMULA Application Development System

The following sections describe how to create and manage executable applications using PROMULA. For example,
suppose you wish to create a ssimple application that will let you enter monthly sales and cost figures then compute and
report the monthly profits and the average monthly profit. We have written such a program for you, it is called DEMO. PRM
and it is on the PROMULA distribution disk. The dialog produced by running this program is displayed below:

Pl ease enter the nonthly sales figures.
? 13200 12100 14800 16200 15200 17200 18060 18960 19900 20900
? 21950 23050

Pl ease enter the nonthly cost figures.
? 9200 8600 10400 11300 10700 12100 12700 13350 14000 14700
? 15440 16210

Monthly Profit and Loss Figures (9)

Sal es Cost s Profit
January 13, 200 9, 200 4, 000
February 12,100 8, 600 3,500
Mar ch 14, 800 10, 400 4,400
April 16, 200 11, 300 4,900
May 15, 200 10, 700 4,500
June 17, 200 12,100 5,100
July 18, 060 12, 700 5, 360
August 18, 960 13, 350 5,610
Sept enber 19, 900 14, 000 5,900
Cct ober 20, 900 14, 700 6, 200
Novenber 21, 950 15, 440 6,510
Decenber 23, 050 16, 210 6, 840

Average nonthly Profit ($) 5,235.00

Figure 2-1: Dialog produced by DEMO.XEQ

The source code for DEMD. PRMis displayed below.

OPEN SEGVENT " DEMO. XEQ' STATUS=NEW
DEFI NE PROGRAM " A Denmo Progrant
DEFI NE SET
nont h(12) "Mont hs of the Year"
acnt (3) "Profit and Loss Ledger Accounts"
END SET

DEFI NE VARI ABLE
mp(rmont h, acnt) "Monthly Profit and Loss Figures ($)" TYPE=REAL(10, 0)
anp "Average Monthly Profit ($)" TYPE=REAL(10, 2)
m(nont h) "Mont h Nanes" TYPE=STRI NG 12)

Promula Application Development System User's Manual

acn(acnt) "Profit and Loss Account Nanes" TYPE=STRI N 12)
END VARI ABLE

DEFI NE RELATI ON
ROW nont h, m)
COLUM\(acnt , acn)
KEY(acnt, acn)

END RELATI ON

READ
January
February
Mar ch
April
May
June
July
August
Sept enber
Cct ober
Novenber
Decenber

READ acn: 6
Sal es Costs Profit

DEFI NE PROCEDURE profits
SELECT acnt (Sal es)
WRI TE" Pl ease enter the nonthly sales figures."
READ mp(acnt, nont h)
SELECT acnt (Cost s)
WRI TE" Pl ease enter the nmonthly cost figures."”
READ np(acnt, nont h)
SELECT acnt*
mp(m3) = np(m1l) - np(m2)
anp = SUM'm (mp(m 3)/12)
WRI TE np
WRI TE anp
END PROCEDURE profits

END PROGRAM DO profits

Figure 2-2: Source Code of DEMO.PRM

This code defines a complete, interactive application that can help its user enter monthly sales and costs figures and
compute and report the monthly profits and the average monthly profit.

2.1.1. Starting PROMULA
Typically you will start PROMULA from the DOS prompt by entering the word "PROMULA". You may include any
PROMULA statement after the word "PROMULA" on the command line. Several examples of this are shown below:

1 PROMULA
SELECT FOREGROUND=GREEN COMVA=OFF GRAPHI CS=H GH

This will load PROMULA, set the foreground color to green, turn the comma option for numeric displays off, and
select the HIGH graphics mode. PROMULA will start in command mode, not with the PROMULA Main Menu.

Promula Application Development System User's Manual

2. PROMULA
RUN COWPI LER "nyprog. prnmt LI ST=DI SK "myprog.|st" PAUSE=ON

This will load PROMULA and compile the statements in the file mypr og. pr m The statements in nypr og. pr mand

any output they generate will be saved on disk in the file mypr og. | st . After compiling the file, PROMULA will bein
command mode.

3. PROMULA RUN PROGRAM "nyprog. xeq"

Thiswill load PROMULA and start the PROMULA application contained in the file nypr og. xeq.

2.1.2. ThePROMULA Main Menu

If you start PROMULA with no command line statement, PROMULA will load into memory and display its Main Menu.
The PROMULA Main Menu is designed to give you direct access to a variety of program development functions.

PROMULA V3.00 (09/01/91) IBMPC Version

Mai n Menu

Key Function

F1 Exit PROMULA

F2 Restart PROMULA

F3 Run the PROMJLA Tutori al

F4 Edit a source file

F5 Conpile a source program

F6 Run a program fromthe consol e
F7 Resume an interrupted program
F8 Run a programfroma disk file
F9 Run a nenu of applications
F10 Use the PROMULA Language

L] Press desired key or move bounce bar and press [ENTER] -

Copyright 1988-91 PROMULA Devel opment Corporation, ALL RI GHTS RESERVED
Application Managenment System

To begin the desired function, simply press the corresponding function key. On the IBM Personal Computer the function
keys are the ten shaded keys at the left (or at the top) of the keyboard. Alternatively, you may press the numeric keys on
your keyboard or highlight the desired option and press the Enter key.

2.1.2.1. F1-- Exit PROMULA

Selecting Main Menu option 1 gets you out of PROMULA and returns control to the operating system. All PROMULA
files which are open at thistime are automatically closed. Any PROMULA information contained within the memory of the
computer which has not been saved on a disk file, islost. In addition to closing its open files, PROMULA clears the screen
before ending.

Promula Application Development System User's Manual

2.1.2.2. F2-- Restart PROMULA

Selecting Main Menu option 2 restarts PROMULA. Before the restart, PROMULA closes all application files, clears all
application information from the memory of the computer, and clears the screen.

Thisis a convenient feature to use when you wish to move from one PROMULA application to another without having to
go back to the operating system.

2.1.2.3. F3-- Runthe PROMULA Tutorial

The PROMULA Tutoria is the reference chapter of this User's Manual in on-line, menu-driven form. The program that
controls the tutorial iscalled PROMULA.TUT.

Y ou can use the Tutoria in various ways:
1. Browse through the entire Tutorial once to obtain an overview of PROMULA.
2. Select aparticular topic in the Tutorial when you have a particular question.

To get to the Tutorial while executing a program, press the Esc key to suspend the program and display the Main Menu;
then select Main Menu option 3 to browse the Tutorial and the topic of interest. When you wish to leave the tutorial, press
the End key; this returns you to the Main Menu. Y ou may then return to the interrupted program by selecting Main Menu
option 7.

2.1.2.4. F4 -- Edit a SourceFile

This clears the screen and initiates the PROMULA Text Editor, which is a fast, full-screen text editor that may be used
from the Main Menu, from command mode, and from inside your applications viathe RUN EDITOR statement.

On-line help for the editor isin the dialog file EDITOR.TUT and is accessible by pressing Alt-H.

For example, to edit the demo file DEMO. PRMshown in Figure 2-2, simply press Alt-E and enter the file name DEMO. PRM

2.1.2.5. F5-- Compile a Sour ce Program

PROMULA accepts statements in either of two modes: direct and indirect. Main Menu option 5 is used to put PROMULA
into indirect mode. In indirect, or compilation mode, PROMULA converts the statements of an entire "source” file to an
"executable" form, which may be saved on disk for later execution.

Use Main Menu option 5 when you wish to compile a file containing the PROMULA source code. If the results of the
compilation are saved in a segment file, it can be executed either interactively (i.e., directly from the console), using Main
Menu option 6, or in batch mode from a text input file using Main Menu option 8 .

"Compiling a program" means converting it from source instructions to executable instructions. Sour ce instructions are
the statements of a program as you write them for PROMULA to understand and compile, i.e., convert to executable
instructions. Executable instructionsin turn are instructions that PROMULA converts to machine instructions which the
computer can execute at run time.

To compile the demo program DEMO. PRM select Main Menu option 5 and respond to the system prompts, as shown in the
dialog below:

Enter the filename of the programto be conpiled
? DEMO. PRM

Where do you want the conpilation listing? N)one, Console, P)rinter, or D)isk
? P

Promula Application Development System User's Manual

Do you want the conpiler to pause on errors? Y)es or N)o
?Y

The dialog above tells PROMULA to compile the source program stored in file DEMO. PRM to list the results of the
compilation on the printer, and to pause if any errors are detected.

In the dialog above, the questions are issued by PROMULA while the responses (following the ? prompt) are entered by the
user.

The first question asks for the name of the file containing the source code to be compiled. Any filename which is valid for
the operating system isavalid entry for this question. The default extension for source file namesis.PRM.

The second question asks where PROMULA should send the compilation listing. The listing may be viewed on the screen,
sent to the printer, saved in a file on disk, or turned off. Viewing the listing on the screen or printer may sow the
compilation down but may make it easier to understand compilation errors. If the listing is sent to the printer, then the
printer needs to be turned on and ready to go before the response to this question is entered. PROMULA does not check to
ensure that thisistrue and will compile the program without sending it to the printer if you fail to turn the printer on. If the
listing is to be saved on a disk file, you must specify the name of the disk file in response to the next question, as shown in
the second example below. If you want the code to compile as fast as possible, and do not need to view the listing as the
program is compiled enter N for the N) one option.

The third question asks whether or not PROMULA should pause when a compilation error is encountered:

1. If you respond Y for "yes' to the question, then each time an error is encountered, PROMULA will display the
appropriate error message and will pause with the following message:

Press any key to continue

At this paint, if you press the Esc key, the compilation will end and you will return to the Main Menu. If you press any
other key, the compilation will continue.

2. If you respond N for "no" to the question, then an error message will be displayed for each error, but PROMULA will
continue compiling. Note that the result of any compilation which was continued despite an error will probably not be
well formed.

A similar dialog occursif you wish to save the compilation output on a disk file:

Enter the filename of the programto be conpiled

? DEMO. PRM
Where do you want the conpilation listing? N)one, Console, P)rinter, or D)isk
? D
Enter a filenane for the conpilation listing
? DEMO LST
Do you want the conpiler to pause on errors? Y)es or N)o
?Y

The objectives of this example are to compile the source program DEMO. PRMand to save the compilation listing on a disk
file named DEMO. LST for later viewing or printing.

In the compilation example shown above, three files are involved:

1. The program source file, DEMO. PRM

10

Promula Application Development System User's Manual

2. Thecompilation listing saved on file DEMO. LST

3. The executable file resulting from the compilation was saved on file DEMO. XEQ, as specified in the OPEN SEGMENT
statement of the source file. It is this file that you may execute interactively, using Main Menu option 6, or execute in
batch mode, using Main Menu option 8.

2.1.2.6. F6 -- Run a Program from the Console

An executable program may be run in one of two ways. interactively or in batch. Interactive execution proceeds as follows:
the program issues prompts via menus, ASK statements, and other interactive commands on the console and expects a
response from the user before it continues execution. In batch mode, on the other hand, program execution proceeds
without pausing for user input from the keyboard. In this mode, al of your responses are expected to have been saved in a
disk file, called the "batch input file".

Main Menu option 6 is used to execute a compiled PROMULA program interactively, i.e., directly from the console and
the keyboard. Selecting Main Menu option 6 resultsin adialog such as the one shown below:

Enter the filenane of the programto be executed
? DEMD. XEQ

DEMO. XEQ is the name of the executable program that was produced by compiling the DEMO. PRM source program using
Main Menu option 5. The default extension for executable file names is . XEQ. Execution of DEMO. XEQ results in the
following dialogue:

Pl ease enter the nonthly sales figures.
? 13200 12100 14800 16200 15200 17200 18060 18960 19900 20900
? 21950 23050

Pl ease enter the nonthly cost figures.
? 9200 8600 10400 11300 10700 12100 12700 13350 14000 14700
? 15440 16210

Monthly Profit and Loss Figures (9)

Sal es Cost s Profit
January 13, 200 9, 200 4, 000
February 12,100 8, 600 3,500
Mar ch 14, 800 10, 400 4,400
April 16, 200 11, 300 4,900
May 15, 200 10, 700 4,500
June 17, 200 12, 100 5,100
July 18, 060 12, 700 5, 360
August 18, 960 13, 350 5,610
Sept enber 19, 900 14, 000 5, 900
Cct ober 20, 900 14, 700 6, 200
Novenber 21, 950 15, 440 6, 510
Decenber 23, 050 16, 210 6, 840

Average nonthly Profit ($) 5,235.00

Figure 2-3: Dialog produced by DEMO.XEQ

11

Promula Application Development System User's Manual

While running an application in interactive mode, you may suspend program execution by pressing the Esc key at a
program pause. To resume execution at the point where you exited, select option 7 from the Main Menu.

2.1.2.7. F7-- Resume an Interrupted Program

You can interrupt an executing program by pressing the Esc key in response to any program prompt. This gets you out of
the program and returns you to the Main Menu. At this point, you have direct access to the program information and
procedures. From the Main Menu you can perform a number of useful operations, like using the editor or using PROMULA
in direct mode (by selecting Main Menu option 10) to perform diagnostic or debugging operations. In direct mode, you may
audit the contents of the program selectively or make other adjustments before resuming execution. This is a very useful
feature for devel oping and testing programs.

To return to the precise point of execution where you exited the program select option 7 off the Main Menu.

2.1.2.8. F8-- Run aProgram from a Disk File

An executable program may be run in one of two ways: interactively or in batch mode. Interactive execution proceeds as
follows: the program issues prompts, pauses after each prompt, and expects a response from you before continuing
execution. The program issues its prompts on the console and you enter your responses with the keyboard or mouse, one at
atime. In batch mode, on the other hand, program execution proceeds without pause for user input from the keyboard. In
this mode, all of your responses are expected to have been saved "in batch" on atext file, called the batch input file. For
more information about preparing batch input files, see the section entitled Running I nter active Programsin Batch.

It is often inconvenient to execute a program directly from the console. It might be that the program is executed very often
with minor or no data changes. Alternatively, the program might execute very slowly, or an exact record of each execution
might be desired. Whatever the reason, batch execution provides the capability to execute a program in a non-interactive,
file-driven mode. During batch execution, your program reads from a batch input file. The batch input file is a standard text
file produced by any text editor. It contains the responses to the various program prompts in the precise order and form that
they would be entered directly on the keyboard.

Main Menu option 8 is used to execute a compiled PROMULA program in batch mode, i.e., via commands in a "batch
input file" on disk. In contrast, Main Menu option 6 is used to execute a compiled PROMULA program interactively, i.e.,
directly from the console. Selecting Main Menu option 8 results in the sasmple dialog shown below:

Enter the filenanme of the batch input file

? DEMO. | NP
Where do you want the batch output listing? Console, P)rinter, D)isk
? D
Enter a filenane for the batch output listing
? DEMO. QUT
Enter the filenane of the programto be executed
? DEMD. XEQ

DEMO. | NP is afile containing the responses required by the program DEMO. XEQ and its contents are shown below:

13200 12100 14800 16200 15200 17200 18060 18960 19900 20900 21950 23050
9200 8600 10400 11300 10700 12100 12700 13350 14000 14700 15440 16210

DEMO. QUT is the disk file where the output is saved. This file is shown in Figure 2-4 and can be printed later or browsed
using a text editor. The "batch" output shown here is the same as the output produced by running DEMO. XEQ interactively
and spooling the run directly to the file DEMO. OUT.

12

Promula Application Development System User's Manual

Pl ease enter the nonthly sales figures.
? 13200 12100 14800 16200 15200 17200 18060 18960 19900 20900
? 21950 23050

Pl ease enter the nonthly cost figures.
? 9200 8600 10400 11300 10700 12100 12700 13350 14000 14700
? 15440 16210

Monthly Profit and Loss Figures (9)

Sal es Cost s Profit
January 13, 200 9, 200 4, 000
February 12,100 8, 600 3,500
Mar ch 14, 800 10, 400 4,400
Apri 16, 200 11, 300 4,900
May 15, 200 10, 700 4,500
June 17, 200 12,100 5,100
July 18, 060 12, 700 5, 360
August 18, 960 13, 350 5,610
Sept enber 19, 900 14, 000 5,900
Cct ober 20, 900 14, 700 6, 200
Novenber 21, 950 15, 440 6,510
Decenber 23, 050 16, 210 6, 840

Average nonthly Profit ($) 5,235.00

Figure 2-4: Contentsof FileDEMO.OUT

2.1.2.9. F9-- Run aMenu of Applications

Main Menu option 9 is used to start the application PROM ULA.XEQ. A default PROMULA.XEQ program is distributed
with PROMULA. This application displays a menu from which you may access either the PROMULA course or any of the
sample programs provided with your PROMULA package. The sample programs and the course can help you learn to write
and use your own PROMULA programs.

PROMULA.XEQ is a standard PROMULA executable (its source code is contained in the file PRMDEM O.PRM) and it
may be replaced by a program you create that supports a menu of your own applications. To do this, create a PROMULA
executable called PROMULA.XEQ. Note that the name of the executable file launched by selecting Main Menu option 9
is hardwired in the system and must be PROM ULA.XEQ.

2.1.2.10. F10-- Usethe PROMULA Language
Selecting Main Menu option 10 (humeric key 0) puts PROMULA into direct or Command Mode. In this mode,

PROMULA accepts a single statement of source instructions, converts it to executable instructions which are executed by
the computer, and proceeds to the next statement.
Pressing the Esc key or entering the STOP statement gets you out of direct mode and returns you to the Main Menu.
In direct mode, PROMULA issues the prompt
PROMULA?

and expects you to enter a statement on the same line of the screen. To enter a statement, simply type it in and press the
Enter key. After entering a statement, PROMULA will execute it and prompt you again for a new statement.

13

Promula Application Development System User's Manual

Some PROMULA statements have a beginning, an end, and a number of other line entries inbetween. For such a structured
statement, PROMULA issues the short question mark prompt

?

until the end of the statement is entered. The short prompt is intended to remind you that you have not yet ended a
structured statement that you started in an earlier entry line. For example, entering in direct mode the set definitions of
Figure 2-2 would result in the following interaction:

PROMULA? DEFI NE SET

? nmont h(12) "12 Months of the Year"
? acnt (3) "3 Profit and Loss Ledger Accounts"”
? END SET

PROMULA?

Any program compiled in batch using the Main Menu (option 5) can also be entered directly from the keyboard in
command mode. The result is the same as compiling in batch mode.

2.1.3. Running Interactive Programsin Batch

PROMULA programs may be executed interactively or in batch. During interactive execution, any questions or prompts
presented by the program are answered by a person using the keyboard and/or mouse. The person responding to the
program is referred to as the user. During batch execution, any questions or prompts presented by the program are
"answered" by one or more lines of text in afile on disk. The file containing the responses is referred to as the batch input
file or batch script.

A batch script can describe any sequence of inputs that PROMULA might expect from a program user. The responsesin a
batch script are usually a mixture of batch commands and data for the program. The batch commands may also be used by
persons running PROMULA interactively on a terminal that does not support non-printing keys such as Home, End, and
Escape.

In order to prepare batch input files correctly, it is necessary to understand PROMULA's input model. PROMULA accepts
inputsin one of two forms: K eypresses and Recor ds.

K eypresses are single keystrokes or simultaneous keystroke combinations (e.g., Alt-H). Almost all keypresses are input by
pressing some non-printable key on the keyboard. Keypresses may also be input by "pointing and clicking" on specific
areas of the screen with a mouse. Examples of keypresses are pressing the Page-Down key to move to the next page of a
display, pressing the End key to finish browsing or editing a display, and pressing a key to make a selection from a pick
menu.

Records are strings of printable characters that represent data or responses to program prompts. Most records are input by
reading them from a text file, or by typing them in and pressing the Enter key. Examples of records are PROMULA
statements entered in command mode, and data entered in response to an ASK or READ statement. Another example of a
record is the value entered in response to the

Enter Value or End?
prompt generated by PROMULA'svarious EDIT statements.
When you prepare a batch script, you have to know exactly what happens when the program runs interactively. You also
have to keep track of when the program expects keypresses and when it expects records. If the program is expecting a

record, type it on the next line of the script. If the program is expecting a keypress, type the batch command for the
keypress on the next line of the script.

14

Promula Application Development System User's Manual

The batch commands are the simple one-character codes shown in Table 2-1 below:

Table2-1: The PROMULA Batch Language Commands

CODE MEANING INTERACTIVEKEYPRESS* NOTES
S Display the screen image None 1
m Escape to main menu Esc 2
e End End 2
r Move right one position Right arrow 2
I Move left one position Left arrow

b Backspace Backspace

a Move to beginning of current line Ctrl-Left Arrow

z Move to end of current line Ctrl-Right Arrow

X Delete current character Del

[Toggle insertion characteristics Ins

t Tabright Tab 3
] Tab left Shift-Tab 3
u Move up one position Up arrow 3
d Move down one position Down arrow 3
f First page Home 3
p Previous page PgUp 3
n Next page PgDn 3
h Help Alt-H

1. Function key 1... F1...

11... Shift+Function key 11... Shift-F1...

! Explicit Return or Enter Return or Enter 4

* The interactive keypresses presented above correspond to keys on a standard IBM PC-Compatible keyboard.
Keyboard tables for other platforms are included with the PROMULA installation instructions.

Table 2-2 Notes:

(1) Most screen output is suspended during batch execution. The show command(s) may be used to display the screen. If
the run is being saved on disk or printed, the screen will be written to the output file or printed.

(2) The \E and \R batch commands for Escape and Resume an application are no longer compatible with PROMULA's
batch command language. They have been replaced with Main Menu selections so that the batch scripts can more
closely parallel interactive runs. For example, the new and old methods of escaping and resuming from a batch run are
illustrated below:

OLD WAY NEW WAY
PROMULA VERSIONS 2.XX AND EARLIER PROMULA VERSIONS 3.XX AND LATER

15

Promula Application Development System User's Manual

bat ch st atenents. bat ch st atenents.

\E m (or #mas a record)

10 (Main Menu option 10)
"comand node" statenents

"command node" statenents
\R .

#m

7 (Main Menu option 7)

nore batch statenents .
nore batch statenents

(3) During batch execution, the command-line buffer is not active, so the use of these keys to control it is not supported.

(4) The exclamation point (!) may be used to indicate that the Return or Enter key is to be pressed when PROMULA is
waiting for a keypress. The enter command is useful for putting PROMULA into data entry mode during batch
execution of an EDIT statement. Use of the exclamation point to signify the return used to enter a record is not
required or allowed.

Notice that the batch commands are printable characters and therefore look like records. If the program is expecting a
record, and you want to enter a keypress, precede the keypress code with a pound sign (#). For example, if the program is
expecting a record, and you want to escape from the application to the main menu, enter #m. If you put just an m, the
program will read m as the value of the record.

There is one exception to these guidelines: if the program is expecting a keypress that is also used as a batch command, you
must precede the keypress with a pound sign. For example, if the program has a popup pick menu option with selection key
m and you want to select the m option in your batch script, put a#m on the next line of the batch script. If you put just an m,
the program will escape to the main menu instead of selecting the program menu's m option.

The easiest way to prepare a batch script is to run the program interactively and make careful notes of the keypresses and
records that are entered. Next, trandate the keypresses into batch commands using the relationships in Table 2-1. Each
record is placed on aline in the script just as it would be typed during interactive execution. Optionally, some data records
may be replaced by PROMULA commands. For example, instead of trying to use batch commands to respond to an EDIT
statement, escape from the application and use equations, READ statements, and procedure calls to assign values to the
variables. Of course, this method requires that you know the names of the items contained in the program.

There should be a close parallel between the interactive keypresses and records entered during interactive mode and the
commands and data in the batch script. Plots are the one exception to this rule: during an interactive run, PROMULA
pauses for a keypress after generating a plot; however, during a batch run, PROMULA does not pause after a plot, so no
keypressis needed.

There are two ways to run an application in batch: start the application using Main Menu option 8, or compile the
statements that start the application using Main Menu option 5 or a RUN statement. For example, compiling the following
statements start a batch run of the application contained in the segment file t est . xeq; execution starts with the first
statement of the procedure called pr oc.

OPEN SEGQVENT "test.xeq" STATUS=0OLD
READ SEGVENT MAI N, DO proc

bat ch conmands

Example:

16

Promula Application Development System User's Manual

The program batche.pr m shown below will be used as an example for the batch run.

OPEN SEGMVENT " BATCHE. XEQ' STATUS=NEW
DEFI NE PROGRAM " BATCH TEST"

DEFI NE VARI ABLE

opt “menu option”

b "b variable" TYPE=REAL(12, 3)
a "a variable" TYPE=REAL(12, 3)
X "x variable" TYPE=REAL(12, 6)

END VARI ABLE

DEFI NE W NDOW
sw(01, 01, 28, 20, WHI TE/ BLACK, FULL/ SI NGLE/ WHI TE/ BLACK)
mM 32, 01, 78, 20, WH TE/ BLACK, FULL/ SI NGLE/ WHI TE/ BLACK)
pw(01, 23, 78, 23, WH TE/ BLACK, FULL/ SI NGLE/ WHI TE/ BLACK)
END W NDOW

DEFI NE MENU pi crmu POPUP(SW PW
\EDI T\
\ COMPUTE\
\ DI SPLAY\
\QUIT\

END

FI ELD 1, SELECT=E, HELP=0, ACTI ON=1
EDI T VALUES

END

FI ELD 2, SELECT=C, HELP=0, ACTI ON=2
COMPUTE VALUES

END

FI ELD 3, SELECT=D, HELP=0, ACTI ON=3
DI SPLAY VALUES

END

FI ELD 4, SELECT=Q HELP=0, ACTI ON=4
QT

END

END pi crmu

DEFI NE MENU dat mu
ENTER | NPUTS
A =

batche.prm (continued)

DEFI NE PROCEDURE ctr |
SELECT pi cnrmu(opt)
DO | F opt EQ 4

BREAK ctrl
ELSE opt EQ 1

EDI T dat mu(a, b)
ELSE opt EQ 2

X =a*hb
ELSE opt EQ 3

WRITE CENTER (a " * " b " =" x // "PRESS A KEY TO CONTI NUE") CLEAR(-1)
END
ctrl
END PROCEDURE ctrl

DEFI NE PROCEDURE st art

17

Promula Application Development System User's Manual

OPEN mw MAI N

OPEN pw PROVPT

ctrl

CLEAR MAI N

CLEAR PROVPT

WRI TE CLEAR(0)

END PROCEDURE st art

END PROGRAM DO start

Let's assume we want to run this program using Main Menu option 5 for two different sets of inputs. The first set of inputs
is (a=1.5, b = 4.0);thesecond set of inputsis(a=1.2, b = 6.0).

BATCH SCRIPT COMMENTS
OPEN SEGMENT " bat che. xeq" Open the segment file containing the program.
READ SEGMENT MAIN Read the program into memory, execution starts with procedure st art .
m SELECT pi crmu(opt): expecting a keypress; escape to Main Menu
10 Main Menu: select option 10 to go to command mode.
a = Command mode statement:a = 1.5
= 4. Command mode statement: b = 4.0
#m PROMULA expecting a card, escape to Main Menu
7 Main Menu: select option 7 to resume an interupted application.
#e SELECT pi crmu(opt): expecting akeypress; choose option C, Compute.
#d SELECT pi crmu(opt): expecting a keypress; choose option D, Display.
! WRITE ... CLEAR(-1): Pressany key (e.g., Enter)
#e SELECT pi crmu(opt): expecting a keypress; choose option E, Edit
! EDI T dat mu(a, b): pressenter for data entry mode.
1.2 Provide data card for first field of menu (a = 1. 2).
! EDI T dat rmu(a, b): pressenter for data entry mode
6.0 Provide data card for second field of menu (b = 6. 0).
e EDI T dat rmu(a, b): pressend to exit.
#C SELECT pi crmu(opt): expecting a keypress; choose option C, Compute.
#D SELECT pi cnmu(opt): expecting akeypress; choose option D, Display.
! WRITE ... CLEAR(-1): Pressany key (e.g., Enter)
#Q SELECT pi crmu(opt): expecting a keypress; choose option Q, Quit.

2.1.4. PROMULA Keyboard Conventions

Depending on context, special keys have various effects. Local PROMULA prompts describe what the actions of the
various keystrokes are. Most special keys are used in browsing and editing operations or in picking from menus.

The PgUp, PgDn and Home keys are used for paging through multi-screen displays (browsing). The Ctrl key is used with
the PrtSc key to toggle the printer on and off.

The function keys (or numeric keys) are used for making selections off pick menus. The function keys are also used for
interactively paging through the dimensions of multidimensional reports. The Alt (or Shift) key is used with the function

18

Promula Application Development System User's Manual

keys to make selections off pick menus that have more than ten options; it is also used with most keystrokes of the
PROMULA Text Editor.

The Backspace, Del and Ins keys are used in line editing. The Ins and Del keys are also used in tagging and untagging
elements of lists during execution of the SELECT SET statement.

The Return or Enter key isthe "end of record/line feed" signal and completes each PROMULA statement or data record.

The Arrow keys, Home, PgUp, and PgDn keys are used to move through selection lists, data menus, array variable
displays and for file browsing.

The End key is used to end most interactive processes such as variable browsing and editing, menu editing, selection lists,
etc.

See the description of Line Editing and the interactive PROMULA statements for more information on PROMULA's
keyboard conventions.

PROMULA displays a prompt describing the relevant key actions whenever an interactive statement is executed.

2.1.4.1. Esc-- Escapetothe PROMULA Main Menu

The Esc key enables you to suspend a PROMULA application and return to the PROMULA Main Menu. The information
in your working space at the point of interruption is still available to you, and you may access it in command mode by
selecting Main Menu option 10. While the program is suspended, you may browse the PROMULA tutorial, show
intermediate results, perform various debugging operations, or even add new procedures and variables to the interrupted
application by typing them in or by using the RUN COM M AND statement to read them from a file.

To return to the interrupted application, press the Esc key again to return to the PROMULA Main Menu and then select
Main Menu option 7 — Resume an interrupted program.

2.1.4.2. Alt-H -- Get Context-sensitive Help

Pressing the Alt-H keys simultaneously will give you context-sensitive help, i.e., it will give you access to that topic within
a help file that is pertinent to the particular point of the application that you are currently working with. This kind of local,
context-sensitive help for the user has to be programmed in advance, i.e., a help file must be available and the logic to
access a particular help topic must be coded into the procedure that you are working with. See DEFINE DIALOG for
instructions on how to build help files; BROWSE DIALOG and BROWSE TOPIC for instructions on accessing help
files, and DO IF HELP and DO IF ERROR VAL UE for instructions on how to detect a call for help and branch to field-
specific help accordingly.

2.1.5. LineEditing
When using PROMULA in direct mode or responding to prompts generated by the PROMULA editor, READ, EDIT, or
ASK statements, you will use PROMULA's line editor. All information entered while in the line editor is saved in the line

editor's buffer so that you may recall previously entered commands and data for modification and re-entry.

The following key conventions are used by the PROMULA line editor:

KEY ACTION
Enter Enter aline for processing and put it on the bottom of the line editor's buffer
Up-arrow move up line editor's buffer (recall previous entries)

19

Promula Application Development System User's Manual

Down-arrow move down line editor's buffer
Home clear the input line

PgUp move to top of line editor's buffer
PgDn move to bottom of line editor's buffer
Tab move cursor 8 spacesto the right
Shift-tab move cursor 8 spacesto the left
Right-arrow move cursor 1 space to the right

L eft-arrow move cursor 1 space to the left

Ctrl Right-arrow move cursor to end of line

Ctrl Left-arrow move cursor to beginning of line

Delete delete the character over the cursor

Backspace delete character to left and move cursor 1 space to left
Insert toggle insert/overwrite mode

2.1.6. Printer Control
Y ou can send output to your printer by doing the following:

1. Issue the command SELECT PRINTER=ON. Thiswill send all PROMULA output to the printer until you issue the
command SELECT PRINTER=0OFF.

2. OnanIBM compatible computer, simultaneously press the Ctrl key and the PrtSc key. This will send all PROMULA
output to the printer until you turn the print toggle off by simultaneously pressing Ctrl-PrtSc again.

3. Onan IBM compatible computer, simultaneously press the Shift key and the PrtSc key. This will send to the printer
the contents of the current screen.

Other printer control options are discussed in Chapter 3 under the SELECT option statement.
Some printer control commands will not work unless your printer is on and properly connected to the computer.

If aSELECT OUTPUT statement is executed before a SELECT PRINTER=ON, output will be saved in the specified
disk file.

2.2. PROMULA Application Programming

The following sections describe how to write the source code for a PROMULA application program.

An application program is an ordered set of instructions that tell the computer how to solve a particular problem, or perform
a particular function, operation, or procedure. The instructions of a program — sometimes called commands, statements, or
source code — are written in a human-readable notation, and describe how the program should work. Every statement
should perform one or more of the following basic functions:

1. Data Definition

Thisincludes creating a framework for program information that is convenient and logical to work with.

20

Promula Application Development System User's Manual

2. Program Control

This includes constructing procedures, loops, conditional branches, and other structures that control the sequence of
events that take place during execution of the program.

3. DataManipulation

This includes putting information into a data framework and manipulating it in various ways. Operations such as
performing calculations, reading data, sorting, selecting subsets of data, and doing other operations that transform the
inputs of a program into useful information fall into this category.

4. Report Generation

This includes producing displays of input data and output information. Once a program has transformed the input data
into useful results, it is desirable to produce a report. The report may be text or graphics displayed on the screen,
printed with a printer, or saved in an externa file on disk.

5. Interface Design

This includes creating a functional, attractive interface through which others can use the program easily and
effectively.

In the following discussion, these five basic programming tasks and other important concepts of application programming
are introduced in the context of a simple example caled The Budget Program. This simple application helps its user
determine how much extra money he/she will have after paying all of his/her expenses each month. The budget program is
smaller than the typical PROMULA application, but it can serve to illustrate PROMULA's basic programming constructs
and techniques.

2.2.1. Data Definition
KEY TOPICS:

Variables— Scalars and Arrays

Planning the Data Structures for an Application
Defining Sets

Defining Variables

Relating Setsand Variables

grwNPE

2.2.1.1. Variables-- Scalarsand Arrays

One of the most essentia stepsin creating an application program is data definition — the process of creating a framework
for program inputs and outputs that is convenient and logical to work with. To do this, the programmer must specify the
types of information the application will manipulate and must determine an efficient framework for storing this
information.

The basic unit of information storage in PROMULA, and most other computer programming languages, is called a
variable. The information stored in a variable may be in the form of letters, numbers, or other characters, and may be a
single value or agroup of values.

Consider for example the value shown in Figure 2-5 below.

Aver age Monthly Expense ($) 1,001.33

21

Promula Application Development System User's Manual

Figure 2-5. A Scalar Variable
The value, 1,001.33, could be stored in a single PROMULA variable. A single-valued variable like this one is sometimes
referred to as a scalar. A numeric scalar variable is the simplest and smallest type of variable that can be defined in
PROMULA.

Now consider the list of values shown below:

Aver age Expenses by Expense Category ($)

RENT 409. 00
FOOD 275. 24
CAR SERVI CE 126. 18
UTI LI TI ES 88. 44
CAR | NSURANCE 45. 00
PHONE 57. 48

Figure2-6: A One-dimensional Array Variable

The six values above could aso be stored in asingle PROMULA variable. Since this variable contains a group of values, it
is referred to as an array. Variables with a one-dimensional list structure like the one shown above are sometimes called
vectors. You may be familiar with statistical analysis packages that treat all variables like vectors. The values of this vector
are classified by expense category. This means that the "rows" of the variable are the "expense category" dimension. They
are a set of six elements, the expense categories: rent, food, car service, utilities, car insurance, and phone. The vector's
values would be difficult to interpret if the vector and its rows were not well defined.

Finally, consider the table of values below:

Mont hly Expenses by Category ($)

RENT FOOD CAR SERVICE UTILITIES CAR I NS PHONE
JAN 409. 00 286. 64 143. 71 86. 87 45. 00 57. 30
FEB 409. 00 276.76 166. 28 84.78 45. 00 50. 21
MAR 409. 00 280. 81 134. 35 96. 84 45. 00 65. 53
APR 409. 00 294. 05 99. 55 98. 06 45. 00 61. 30
MAY 409. 00 286. 98 88. 13 86. 77 45. 00 58. 03
JUN 409. 00 275. 43 152. 85 98. 06 45. 00 56. 45
JUL 409. 00 269. 81 103. 88 87. 47 45. 00 56. 45
AUG 409. 00 289. 93 127. 67 72.28 45. 00 50. 61
SEP 409. 00 261. 35 171. 10 76. 47 45. 00 55. 64
oCcT 409. 00 258.71 127.52 88. 28 45. 00 58. 33
NovV 409. 00 250. 12 105. 25 91. 41 45. 00 69. 28
DEC 409. 00 272. 28 93. 81 93. 93 45. 00 50. 67

Figure2-7: A Two-dimensional Array Variable

The 72 values above could also be contained in a single PROMULA variable. Variables with this "row by column”
structure are sometimes referred to as two-dimensional arrays. You may be familiar with the two-dimensional worksheets
that most spread sheet and financial modeling programs manipulate. The array values above are classified by month and
expense category. The "rows" of the variable are the "month” dimension; they are a set of 12 elements, the months January
through December. The "columns® of the array are the "expense category" dimension. They are a set of six elements, the

22

Promula Application Development System User's Manual

expense categories: rent, food, car service, utilities, car insurance, and phone. Like the vector above, the array's values
would be meaninglessiif the array and its rows and columns were not well defined.

This progression can be carried further. For example a three-dimensional array can be thought of as a group of two-

dimensional arrays or tables. PROMULA arrays may have up to 10 dimensions, and the PROMULA language is designed
to make it easy for programmers and users to work with this type of highly structured information.

2.2.1.2. Planningthe Data Structuresfor an Application

In PROMULA you must organize your information into array and scalar variables before your program can manipulate
them. Often it is useful to categorize the variables as being either inputs and/or outputs. For example, the budget program
will manipulate the following inputs and outputs.
BUDGET PROGRAM INPUTS
The essential inputs of the budget program are the worker's monthly expenses and income.
Monthly expenses. For each month, the worker must specify his’her monthly expenses. Since the program is intended to
determine the amount of extra money the worker will have at the end of each month, only those expenses that the worker
must pay each month will be included. The monthly expenses will be divided into six categories. rent, food, car service,
utilities, car insurance, and phone.
For each month, the program will compute the worker's M onthly Income from several other inputs:

Hourly Wage Rate ($/hr.) the dollars earned per hour (before taxes),

Payable Hours per Month the number of hours the worker expects to work each month,

Pay Lost to Taxes the fraction of wages lost to taxes,

Monthly Income Bonus ($) a dollar amount earned by the worker independent of the number of hours worked or the
tax rate. If the worker is salaried, thisisthe worker's monthly take-home pay.

BUDGET PROGRAM OUTPUTS

The worker's total monthly income and expenses will be computed from the program inputs. The monthly expenses will be
subtracted from the monthly income to give a monthly balance, or the amount of money that will be left over each month
for saving or spending on luxury items or emergencies. In addition, the annual totals and averages will be computed.

Having determined the inputs and outputs required for our program, we may use PROMULA to create a framework for this
information. The figure below shows the PROMULA statements that can create the essential input and output variables of
the budget program.

DEFI NE SET

nons(12) "Mont hs”

exps(6) "Expense Categories"
END SET

DEFI NE VARI ABLE
* %

** | NPUTS

* %
expns(nons, exps) TYPE=REAL(10, 2) "Mnthly Expenses by Category ($)"
payhr (nons) TYPE=REAL(10, 0) "Payabl e Hours per Month (hr.)"
bonus(nons) TYPE=REAL(10, 2) "Monthly | ncone Bonus"
t axes TYPE=REAL(10, 4) "Fraction of Pay Lost to Taxes"

23

Promula Application Development System User's Manual

wager TYPE=REAL(10, 2) "Hourly Wage Rate ($/hr.)"
* %
** QUTPUTS
* %
i ncom(nons) TYPE=REAL(10, 2) "Monthly Incone ($)"
expnm(nons) TYPE=REAL(10, 2) "Monthly Expenses ($)"
bal ns(nons) TYPE=REAL(10, 2) "Monthly Bal ance ($)"
ai ncom TYPE=REAL(10, 2) "Average Monthly I ncone
aexpnm TYPE=REAL(10, 2) "Average Mnthly Expense "
abal ns TYPE=REAL(10, 2) "Average Mnthly Bal ance "

END VARI ABLE

Figure 2-8: Definition of the Inputs and Outputs of the Budget Program

The code above illustrates the basic elements of data definition in the PROMULA language. The PROMULA statements
displayed above are discussed in the following sections.

2.2.1.3. Defining Sets

In PROMULA, a Set isan ordered list of elements that can serve as an index for and define the structure of array variables.
In other words, sets are classification schemes for information. For example, the values in Figure 2-7 are classified by
month and expense category; these two classification schemes could be defined as setsin PROMULA.

In PROMULA, sets are created with the DEFINE SET statement. The sets required to structure the budget program's
inputs and outputs are described in the table below.

Table2-2: The DEFINE SET Statement for the Budget Program

Set Identifier Number of Elements (Size) Descriptor
nons 12 Mont hs
exps 6 Expense Categories

Each set definition includes the set's identifier, size, descriptor, and other optional information. The set identifier isa short,
symbolic name for the set, and is used to refer to the set in other statements of the program. The set size specifies the range
of the set indices and the number of items which may be indexed by the set. The set descriptor is optional and is used to
describe the set for documentation and program interface purposes.

By default, the elements of a set are ordered from 1 to N, where N is the size of the set. In addition, each set element has a
Label and a sequence number. The default labels for sets are formed from the set identifiers and the element sequence
numbers in parentheses as shown below.

Labelsfor set nons Labels for set exps
MONS(1) EXPS(1)
MONS(2) EXPS(2)
MONS(3) EXPS(3)
MONS(4) EXPS(4)
MONS(5) EXPS(5)
MONS(6) EXPS(6)
MONS(7)

MONS(8)
MONS(9)
MONS(10)

24

Promula Application Development System User's Manual

NONS(11)
MONS(12)

The default element labels may be changed to other more (or less) descriptive ones by reading values into the set, or by
using a DEFINE RELATION or SELECT RELATION statement to specify user-defined labels for the elements. See
"Relating Setsto Variables' below.

For more information about sets, refer to Chapter 3 of this manual, especialy the sections covering the PROMULA noun
set and the DEFINE SET, DO set, SELECT SET, SELECT ENTRY, and SELECT set statements.

2.2.1.4. Defining Variables

Variables are structures that store program information. It isin terms of variables that the data manipulations performed by
aprogram are expressed.

In PROMULA, variables are created with the DEFINE VARIABLE statement. Each variable definition must include a

unique identifier, and may aso include a structure, type, descriptor, and other options for the variable. The variable
definitions for the budget program are shown in Figure 2-8 and are described in Table 2-2 below.

Table2-3: The DEFINE VARIABLE Statement of the Budget Program

Variable Set No.of Value Format

Identifier Structure Values Type (w,d) Descriptor

expns nons, exps 72 REAL 0,2 Mont hly Expenses by Category ($)

i ncom nons 12 REAL 10,2 Monthly I nconme (9)

payhr nons 12 REAL 10,0 Payabl e Hours per Month (hr.)

bonus nons 12 REAL 10,2 Mont hly | ncone Bonus

t axes -- 1 REAL 10, 4 Fraction of Pay Lost to Taxes
(scal ar)

wager -- 1 REAL 10,2 Hourly Wage Rate ($/hr.)
(scal ar)

expnm nons 12 REAL 10,2 Mont hl'y Expenses ($)

bal ns nons 12 REAL 10,2 Mont hly Bal ance (9$)

ai ncom -- 1 REAL 10,2 Average Monthly Incorme ($)
(scal ar)

aexpnm -- 1 REAL 10,2 Average Monthly Expense ($)
(scal ar)

abal ns -- 1 REAL 10,2 Average Monthly Bal ance ($)
(scal ar)

The variable identifier is a short, symbolic name for the variable and is used to refer to the variable in the program. The
variable structure is the scheme according to which its contents are organized and is usually expressed in terms of program
sets. The variable descriptor is a description or label for the variable and is supplied for program documentation and user
interface purposes. The variable format type specifies the kind of values the variable contains and their default display
format.

If no type specification isincluded with the variable definition, it will have format type REAL (8,0) by default. This means
that when the variable is displayed, each of its values will fill a width of 8 characters and will be rounded to the nearest
whole number (0 decimal digits).

Missing from the above definitions are the contents, or values, of the variables. These may be introduced by the READ
statements or by equations. See "Reading in Data" and "Writing Equations’ below. PROMULA initially sets the values of

25

Promula Application Development System User's Manual

variables to zero when they are defined unless a VALUE parameter is included with the variable definition. It is also
possible for avariable to obtain its values from a database. See Chapter 4 for details.

The following figure shows the default displays of some of the program variables defined above. Notice how PROMULA
uses the type specification and other information in the variable definitions to control the displays generated by the WRITE
variable statement:

WRI TE expns
Mont hly Expenses by Category ($)
EXPS(1) EXPS(2) EXPS(3) EXPS(4) EXPS(5) EXPS(6)
MONS(1) .00 .00 .00 .00 .00 .00
MONS(2) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(3) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(4) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(5) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(6) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(7) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(8) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(9) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(10) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(11) 0.00 0.00 0.00 0.00 0.00 0.00
MONS(12) 0.00 0.00 0.00 0.00 0.00 0.00
VWRI TE payhr
Payabl e Hours per Month (hr.)
MONS(1) 0 MONS(2) 0
MONS(3) 0 MONS(4) 0
MONS(5) 0 MONS(6) 0
MONS(7) 0 MONS(8) 0
MONS(9) 0 MONS(10) 0
MONS(11) 0 MONS(12) 0
WRI TE t axes

Fraction of Pay Lost to Taxes 0.0000

VWRI TE wager
Hourly Wage Rate ($/hr.) 0.00

Figure 2-9: Display of some of the variables defined in the Budget Program

For a more comprehensive discussion of variables, refer to Chapter 3 of this manual, especially the sections covering the
PROMULA Noun Variable and the DEFINE VARIABLE statement.

2.2.1.5. Relating Setsand Variables

Although the variables defined above are fully functional, the displays in Figure 2-9 are not complete because the default
labels for the elements of sets mons and exps need to be replaced with more meaningful ones.

There are several methods of relating descriptive information to program sets. One simple and flexible way is to define a
vector variable that is dimensioned by the set whose elements you want to label, then assign appropriate set element
descriptions to the values of the variable and relate the variable to the set. Let's do this for set nons.

First, define a vector variable to contain the set element labels:

26

Promula Application Development System User's Manual

DEFI NE VARI ABLE
nmonsn(mons) TYPE=STRI NG(4) "Month Nanes”
END VARI ABLE

The statement above defines a vector of 12 values called nmonsn. The format type of this variable's values is STRING(4).
String type variables can contain alphanumeric data (letters, numbers, and other characters.) The default display format for
the values of variable nonsn has awidth of four characters.

Second, read in the values to be used as labels for set nons using the READ variable statement. In this case, we will use
three-letter abbreviations for each month.

READ nonsn: 4
JAN FEB MAR APR NMAY JUN JUL AUG SEP OCT NOV DEC

The statement READ monsn:4 tells PROMULA to start reading in column one of the next line and to read four characters
for each of the 12 values of the vector variable nonsn. The values of nonsn after the read are displayed below:

Mont h Nanes
MONS(1) JAN MONS(2) FEB MONS(3) VAR
MONS(4) APR MONS(5) MAY MONS(6) JUN
MONS(7) JUuL MONS(8) AUG MONS(9) SEP
MONS(10) OCT MONS(11) NOV MONS(12) DEC

Third, relate the variable nonsn to the set rons using aDEFINE RELATION statement.

DEFI NE RELATI ON
ROW nons, nonsn)
END RELATI ON

There are four types of relations between sets and variables in PROMULA: ROW, COLUMN, KEY, and TIME. These
are described in the discussion of the DEFINE RELATION statement in Chapter 3. The ROW relation is used to specify
the primary descriptor for a set's elements. The values of the primary descriptor are used to label the elements of the set in
displays of the set and in displays of variables whose rows are classified by the set.

Now, create labels for the elements of set exps. First, define avector variable to contain the set element labels:
DEFI NE VARI ABLE

expsn(exps) TYPE=STRI NG 16) "Expense Categories"
END VARI ABLE

Second, assign values to be used as labels for the elements of set exps. In this case, we will do this with equations.

expsn(1l) = "RENT"
expsn(2) = "FOOD"
expsn(3) = "CAR SERVI CE"
expsn(4) = "UTILITIES"
expsn(5) = "CAR I NS"
expsn(6) = "PHONE"

Third, relate the variable expsn to the set exps using aDEFINE RELATION statement.

DEFI NE RELATI ON
COLUM\(nons, nmonsn)
END RELATI ON

27

Promula Application Development System User's Manual

A COLUMN relation between a set and a variable tells PROMULA to use the variabl€e's values to label columns classified
by the set in displays of array variables.

After defining, initializing, and relating labels to the program sets, a display of any variable dimensioned by the sets is
much more meaningful. For example, the display of variable expns is shown in the dialog below as an example:

VWRI TE expns
Mont hly Expenses by Category ($)

RENT FOOD CAR SERVI CE UTI LI TI ES CAR | NS PHONE
JAN 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
FEB 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
MAR 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
APR 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
MVAY 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
JUN 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
JUL 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
AUG 0. 00 0. 00 0.00 0. 00 0. 00 0. 00
SEP 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
CCT 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
NOV 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00
DEC 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00

For more information about relations between sets and variables, refer to Chapter 3 of this manual, especialy the sections
covering the PROMULA noun Relation and the READ set, DEFINE RELATION, and SELECT RELATION
Statements.

2.2.2. Program Control

KEY TOPICS:

1. Procedures

2. Linear Flow

3. Conditional Branches
4. Looping

One of the most important tasks facing an application programmer is setting up structures to control the sequence of events
that take place during program execution. The efficiency of a program and the accuracy of its results are highly dependent
on the correct implementation of these structures. Fortunately, only three types of control structures are needed to handle
the control requirements of any application program. These are Linear Flow structures, Conditional Branch structures,
and L ooping structures. In addition, a fourth type of control structure, the Procedure is often used to help modularize the
activities of a program into subunits that work together.

2.2.2.1. Procedures

A large computer program is like a complex machine; it can have many parts. The most fundamental of these parts are the
program's statements. Each statement performs a specific predefined task. In addition to the statements that are available in
the PROMULA language, it is possible to create your own. In PROMULA, a programmer-defined statement is called a
Procedure. A procedure is a set of statements that are executed as a group when the procedure's name is used as a program
statement. Thisisreferred to as"calling" or "invoking" the procedure.

Defining procedures gives programmers the ability to break the programming process into simpler steps. Each procedure
creates a functional program unit that can later be integrated with the other procedures to create the full program.

28

Promula Application Development System User's Manual

When PROMULA encounters a procedure name in a program, it executes the statements of the procedure. When execution
of a procedure finishes, processing continues with the statement following the procedure call. Procedures can call other
procedures including themselves.

For more information on procedures, see the DEFINE PROCEDURE statement in Chapter 3 of this manual.

2.2.2.2. Linear Flow

PROMULA applications use linear control as the primary means of directing their course of action. This means that
executable operations are performed in the order in which they are defined. Thus, execution of a program begins with the
first statement of the first procedure of the program and proceeds to follow the program instructions one-by-one toward the
last statement of the program. After execution of the last statement, the program ends. A schematic of linear program flow
is shown in the diagram below:

H
<:_8<:
N

w

Step
U

U

| End (Last Step)]

Figure 2-10: Linear Program Flow

Any one of these steps may be a simple statement, a procedure call, or another control structure.

2.2.2.3. Conditional Branches

A linear flow of action through a program in which every statement from the first to the last is executed in sequence is often
inflexible and inefficient. Even worse, it may lead to errors if the data put into the program does not fit the linear logic
defined by the code. In order to efficiently manage complex problems and data, your programs will require flexibility. The
basic element of al complex control structures is the Conditional Branch. Conditional branches are program statements
that can redirect linear flow and create more flexible and responsive execution paths. A schematic of a conditional branchis
shown in the figure below:

FALSE (0)

TRUE (1)

29

Promula Application Development System User's Manual

Figure2-11: A Simple Conditional Branch

Conditional branch statements are often referred to as "IF-THEN-ELSE" statements. For example, the diagram above
illustrates a simple conditional branch that can be read as"If the Condition is true, then do Process A; else (the Condition is
false), do Process B". Process A and/or Process B may also contain Conditional branches.

An IF-THEN-ELSE statement that might be used in the budget program would check the value of the t axes variable to
make sure it "makes sense." Recall that variablet axes is used by the budget program to make a simple adjustment on the
worker's earnings to reflect the fraction of pay lost to taxes. The program expects this value to be between 0.5 and one. In
PROMULA, the DO | F statement is used to create logical branches.

An example of the DO I F statement that could be used to check the value of t axes and write an error message if the value
does not fit the expectations of the program is shown below:

DO I F taxes GI 1

WRI TE ("The val ue of taxes should be | ess than one.")
ELSE taxes LE O

WRI TE ("The val ue of taxes should be greater than or equal to zero.")
ELSE taxes GI 0.50

WRI TE ("The val ue of taxes should be | ess than 0.5)

END | F

For more information on Branching refer to the sections covering the DO | F statement and the nouns Boolean Expression
and Relational Expression in Chapter 3 of this manual.

2.2.24. Looping

Looping refers to the process of repeatedly performing a set of operations. The basic components of aloop are the body of
the loop, and the DO condition for the loop. The body of the loop is simply the set of instructions that are executed on each
pass through the loop. The DO condition for the loop is a true-fal se expression that is evaluated before each iteration of the
loop to determine if the instructions in the body of the loop should be performed. PROMULA supports severa types of
looping control structures; these include the DO WHILE, DO UNTIL, DO file, and DO set statements, and recursion.

DO WHILE loops execute the instructions in the body of the loop while the DO condition is true.
DO UNTIL loops execute the instructionsin the body of the loop until the DO conditionis false.

DO file loops are used with text or random files. They execute the instructions in the body of the loop once for each record
of the file and exit when the end of fileis reached.

The DO set loop is unique to PROMULA,; it is a set-controlled looping structure that executes the instructions in the body
of the loop once for each element of the set's selection vector. A set's selection vector contains the currently active elements
of the set. Thus, the order and range of a DO set loop can be controlled by sorting and/or selecting the elements of the set.
DO set loops are an extremely powerful tool for manipulating PROMULA's set-based array variables.

Recursion is alooping control structure that does not use one of PROMULA's DO loop statements explicitly. It is used to
execute a procedure repeatedly until some "exit" condition occurs. Recall that a procedure is a group of statements that are

30

Promula Application Development System User's Manual

executed as a unit when the procedure's name is used as a statement. Recursion occurs when one of the statements in the
procedure is a call to the procedure itself. A procedure that callsitself isreferred to as a recursive procedure.

A simple example of arecursion loop is a procedure that offers the user selections from a menu repeatedly until the user
selects the exit option.

An exampleis procedurer ecur s shown below:
DEFI NE MENU pi ckmenu
1 \Exit Procedure\

2 \Action Al

3 \Action B\

4 \Action Q
END

DEFI NE VARI ABLE
choi ce
END VARI ABLE

DEFI NE PROCEDURE r ecur s
SELECT pi cknenu(choi ce)
DO IF PICK EQ 1 < Hereisthetest of the DO condition.
BREAK recurs
ELSE PICK EQ 2
Statenments of Action A
ELSE PICK EQ 3
Statenments of Action B
ELSE PICK EQ 4
Statenments of Action C
END | F
recurs < Here, the procedure recurs calsitself.
END PROCEDURE r ecurs

Notice that the last statement in procedurer ecur s isacall to itself. The DO condition for the recursion loop becomes false
when the user selects option 1 from the menu. The recursion loop is broken when the BREAK procedure statement is
executed. All other menu selections will allow the procedure to be called recursively.

For more information on looping, see the DO WHILE, DO UNTIL, DO set, and DO file, statementsin Chapter 3.

2.2.3. Data Manipulation

KEY TOPICS:

1. Readingindata

2. Selecting the Elements of a Set
3. Sorting the Elements of a Set
4. Writing Equations

Data manipulation is another fundamental programming task that includes loading information into program variables and
manipulating them to create output information.

2.2.3.1. Readingin Data

Getting data into its variables is a basic requirement of all computer programs. One of the easiest ways to read a fixed
amount of information into a variableis to use PROMULA's READ variable statement. This statement is used to read free
format data from the source code of your program or from the keyboard into a variable. Free format means that the format
of the data values does not have to be specified, and the values may be in a variety of arrangements. For numeric data, the

31

Promula Application Development System User's Manual

values need only be separated by blanks or commas, or be on separate lines, and there must be enough values to fill al
active cells of the variable.

For example, the 12 values of the monthly bonus variable defined in Figure 2-8 could be loaded with the values 100, 200,
300, ..., 1200 using any of the following READ variable statements.

READ bonus\ 5 READ bonus

JAN 100 100 200 300 400 500 600 700
FEB 200

MAR 300 800 900 1000 1100 1200

APR 400

MAY 500 READ bonus

JUN 600 100 200 300

JUL 700 400 500 600

AUG 800 700 800 900 1000 1100 1200
SEP 900

COCT 1000 READ bonus

NOV 1100 100 200 300 400 500 600 700 800 900 1000 1100 1200
DEC 1200

The READ variable statement may also be used for scalars. For example, the worker's Hourly Wage Rate ($/hr.), variable
wager , and the fraction of Pay Lost to Taxes, variablet axes, could be read in with the following two statements:

READ wager
10.0

READ t axes
0. 30

Or, both scalar variables could be read in with a single statement:

READ (wager, taxes)
10.0 0.30

Reading in a multidimensional array like variable expns is a little trickier. As mentioned in the section on defining
variables, PROMULA uses the order of setsin an array variable's definition to control how its data values are read in by a
READ variable statement.

Thefirst set is assumed to index the rows of data values.

The second set is assumed to index the columns of data values.

Thethird set is assumed to index the two-dimensional blocks of data.

The fourth set is assumed to index the three-dimensional blocks of data, and so on.

For example, the array expns is defined with set nons as its first (row) dimension, and set exps as its second (column)
dimension. Therefore, array expns could be assigned values identical to those displayed in Figure 2-7 with the following
READ statement:

READ expns Expense Categories go across (the columns)
409 286.64 143.71 86.87 45 57.30 Months go down (the rows)

409 276.76 166.28 84.78 45 50.21

409 280.81 134.35 96.84 45 65.53

409 294.05 99.55 98.06 45 61. 30

409 286.98 88.13 86. 77 45 58.03

409 275.43 152.85 98.06 45 56. 45

409 269.81 103.88 87.47 45 56.45

32

Promula Application Development System User's Manual

409 289.93 127.67 72.28 45 50.61
409 261.35 171.10 76.47 45 55.64
409 258.71 127.52 88.28 45 58. 33
409 250.12 105.25 91.41 45 69. 28
409 272.28 93.81 93.93 45 50. 67

If the data values were rotated relative to the definition of array expns, sets could be included with the READ variable
statement to explicitly indicate the rows and columns of the input data. Again, the first set is assumed to index the rows of
data values, the second set is assumed to index the columns of data values; the third set is assumed to index the two-
dimensional blocks of data; the fourth set is assumed to index the three-dimensional blocks of data, and so on.

READ expns(exps, nons)

409 409 409 409 409 409 409 409 409 409 409 409

286.64 276.76 280.81 294.05 286.98 275.43 269.81 289.93 261.35 258. 71 250.12 272.28
143.71 166.28 134.35 99.55 88.13 152.85 103.88 127.67 171.10 127.52 105.25 93.81
86.87 84.78 96.84 98.06 86.77 98.06 87.47 72.28 76.47 88.28 91.41 93.93

45 45 45 45 45 45 45 45 45 45 45 45

57.30 50.21 65.53 61.30 58.03 56.45 56.45 50. 61 55.64 58.33 69.28 50.67

There is no need for formats or loops to read in the values of an array variable. The definition of the variable contains all
the information needed to control the read so that the data values are put into the appropriate cells of the array.

The examples above are simplistic and are based on reading from the source code of your program or from the keyboard.

PROMULA can also read data from complicated fixed and variable length text and binary (random) files. These techniques
are discussed in Chapter 3 in the sections covering the READ variable, READ variables, and READ file statements.

2.2.3.2. Selecting Sets

A common programming requirement is the selection of a subset of your data. For example,

1. to select the values of an array indexed by particular set sequence numbers before using the array in calculations or
input/output operations,

2. tosdect only those values of a variable that meet a given criteria,
3. to put the values of an array into an order that is not directly possible by using PROMULA's SORT statement.

Whatever your needs, having access to sets as the indexes of multidimensional data gives you a powerful and flexible
means of selecting and sorting subsets of your data.

The SELECT set statement is used to select the elements of aset. Thisisalso called changing a Set selection vector.

The simplest set selection uses a literal specification of set element numbers to specify the elements of the set that are to
remain active. For example, to select the fall and spring months, the following statement could be used:

SELECT nons(9- 11, 3-5)

The statement above tells PROMULA to change the range and order of set nons to the fall and spring months —
September to November and March to May. In other words, the set's selection vector now contains the following values:
9, 10, 11, 3, 4, and 5 in that order. This means that all actions involving set nons will be performed only on values indexed
by these elements of the set. For example, the statement WRI TE expns would produce the following display:

Mont hly Expenses by Category ($)

RENT FOOD CAR SERVICE UTILITIES CAR I NS PHONE
SEP 409. 00 261. 35 171.10 76. 47 45. 00 55. 64

33

Promula Application Development System User's Manual

ocT 409. 00 258.71 127.52 88. 28 45. 00 58. 33
Ne.Y 409. 00 250. 12 105. 25 91.41 45. 00 69. 28
MAR 409. 00 280. 81 134. 35 96. 84 45. 00 65. 53
APR 409. 00 294. 05 99. 55 98. 06 45. 00 61. 30
MAY 409. 00 286. 98 88. 13 86. 77 45. 00 58. 03

To restore a set to its default size and order, use the SELECT set* statement.

Variables may also be used to indicate the elements to be selected. For example, in order to select the months October
through December, and March, the following statements could be used:

DEFI NE VARI ABLE
il
ng
nB8

END VARI ABLE

nl=10
=12
nB=3
SELECT nons(ml- n2, nB)
Y ou can reverse the order of a set by using a set selection that specifies a range from the last element to the first element.

SELECT nons(12-1)

If avariable isrelated to a set by a KEY relation, the variable values may be used to specify set selections. For example,
the statements

SELECT KEY(nons, monsn)
SELECT nons(JAN, FEB, MAY)

will select the months January, February, and May from the set of months. Here, nons is a string variable containing the
three-letter month name abbreviations (see Relating Sets and Variables).

It is also possible to select the elements of a set if the values of a variable dimensioned by the set meet a given criterion.
The SELECT set IF statement is used for these types of selections. For example, in order to select the elements of set
mons that index values of monthly income that are greater than 1500 dollars, the following expression could be used:

SELECT nons | F i ncom GT' 1500
Here, i ncomis anumeric variable, the monthly income values.

For more information on selecting set elements, see the discussions of the PROMULA noun Set and the PROMULA
statements SELECT set, SELECT SET, SELECT ENTRY, SELECT set IF, and SELECT VARIABLE.

2.2.3.3. Sorting Sets

One of the most common data manipulation tasks is sorting. PROMULA provides a straight forward and flexible means of
sorting of multidimensional data. For example, in order to sort the months of the year (set nons) using the monthly income
values (variablei ncom) in ascending order, the following statement can be used:

SORT nons USI NG i ncom

34

Promula Application Development System User's Manual

The statement above tells PROMULA to sort set nons in ascending order using the values of variable i ncom In order for
the SORT statement to work, the variable used as the key for the sort must be dimensioned by the set being sorted.

To sort the set in descending order based on income, use the keyword DESCENDING after the word SORT :

SORT DESCENDI NG nons USI NG i ncom
To restore a set to its default order, use the SELECT set* statement.

It is aso possible to use multidimensional arrays as the key for a sort as well. For example, in order to sort the months of
the year using the monthly food expense values, the following statements can be used:

SELECT exps(2)
SORT nons USI NG expns

The first statement above selects the second column of array expns; this column of the array contains the monthly food
expense values. The second statement tells PROMULA to sort set nons using the values of variable expns. Since the
second column of the set is selected before the sort, the values in the second column of array expns are used to order the
set nons.

For more information and examples of sorting information, see the discussion of the SORT statement in Chapter 3 of this
manual.

2.2.3.4. Writing Equations

Equations are PROMULA statements that can change the values of variables. Equations may involve numeric or string
congtants, variables, arithmetic and user-defined functions, and arithmetic and relational operators. For example, the
variable expns could be initialized with the following six eguations that use PROMULA's built-in RANDOM number
function:

Equation Description

expns(m 1) = 409 Rent is $409 per nonth

expns(m 2) = Food varies between $250 and $300 per nonth
RANDOM 250, 300)

expns(m 3) = Car Service varies between $85 and $175 per nonth
RANDOM 85, 175)

expns(m 4) = UWilities vary between 70 and 100 per nonth
RANDOM 70, 100)

expns(m5) = 270/ 6 Car Insurance is $270 for 6 nonths

expns(m 6) = RANDOM 50, 70) Phone varies between $50 and $70 per nonth

The equations above use the dummy subscript, m to drive equations over the elements of set mons. This means the letter m
in the above equations causes each equation to be performed once for each active element of set nons. Recal that the
variable expns is defined as a two-dimensional array classified by month and expense category. The first dimension of the
variable is the "months" dimension; it is a set of 12 elements: the months January to December. The second dimension of
the array is the "expense category" dimension. It is a set of six elements, the expense categories: rent, food, car service,
utilities, car insurance, and phone.

The "column" of the array (expense category) to which each equation applies is indicated explicitly by the number
following the subscript min the parentheses. The first column of array expns (Rent) is constant at $409/month. Expense
categories 2, 3, 4, and 6 are random values within different ranges; PROMULA's RANDOM function is used with upper
and lower limits to simulate random expenditures in these expense categories. The fifth column of array expns (Car
Insurance) is assigned to the result of the division of 270 by 6 or $45 per month.

35

Promula Application Development System User's Manual

Here is a second example. The monthly income values will be computed by the budget program using the following
equation:

incom = payhr * wager * (1-taxes) + bonus

The equation above uses implicit subscripting. This means that all 12 values of variablei ncomwill be computed from the
single equation above without DO loops or dummy subscripts. PROMULA "knows' that it should perform the expression
for each month because the i ncom variable was dimensioned by set nons in its definition. Furthermore, the variables
payhr and bonus are also dimensioned by set month, and the correspondence between the month elements of these two
vectors and those of variable i ncomis maintained automatically by PROMULA when the equation is processed. Thus, the
single equation above is equivalent to the following 12 equations:

incom(l) = payhr(1) * wager * (1-taxes) + bonus(1)
incom(2) = payhr(2) * wager * (1-taxes) + bonus(2)
incom(3) = payhr(3) * wager * (1-taxes) + bonus(3)
incom(4) = payhr(4) * wager * (1-taxes) + bonus(4)
incom5) = payhr(5) * wager * (1-taxes) + bonus(5)
incom 6) = payhr(6) * wager * (1-taxes) + bonus(6)
incom(7) = payhr(7) * wager * (1-taxes) + bonus(7)
incom8) = payhr(8) * wager * (1-taxes) + bonus(8)
incom(9) = payhr(9) * wager * (1-taxes) + bonus(9)
incom10) = payhr(10) * wager * (1-taxes) + bonus(10)
incom(11) = payhr(11) * wager * (1-taxes) + bonus(11)
incom12) = payhr(12) * wager * (1-taxes) + bonus(12)

The income equation tells PROMULA that the monthly income is equal to the number of hours worked per month (payhr)
times the hourly wage (wager) adjusted for taxes plus the monthly bonus.

Another example of an equation that uses implicit subscripting is the calculation of the difference between the monthly
income and monthly expense values to give the monthly balance figures:

bal ns = incom - expnm

An important point to remember when writing equationsis that a variable may appear on both sides of an eguation. In such
equations, the value of the expression on the right hand side of the equals sign is evaluated then passed to the variable on
the left hand side of the equals sign. For example, if the worker plans to work about six hours out of each working day and
five days out of each week, the number of payable hours each month can be estimated by the following statements:

READ payhr
31 28 31 31 31 30 31 31 30 31 30 31
payhr = 6 * payhr * 5/7

The first statement above reads into payhr the total number of days in each month. The second statement converts the days
per month to hours worked per month and stores the resultsin variable payhr .

PROMULA equations also may use PROMULA's extensive collection of functional operators. One of the most useful of
these is the array summation function, SUM, which can be used to sum up the values of multidimensional arrays. For
example, to compute the monthly total expenditures, it is necessary to sum over the expense categories of variable expns
and save the resultsin a vector indexed by month, expnm

expnnm(n) = SUMe) (expns(me))

The expression above uses two dummy subscripts to drive the month and expense category dimensions. The single equation
above is functionally equivalent to the following 12 equations:

expnm(1l) =expns(1,1) +expns(1,2) +expns(1,3) +expns(1,4) +expns(1l,5) +expns(1,6)
expnm(2) =expns(2,1) +expns(2,2) +expns(2,3) +expns(2,4) +expns(2,5) +expns(2,6)

36

Promula Application Development System User's Manual

expnm(3) =expns(3,1) +expns(3,2) +expns(3,3) +expns(3,4) +expns(3,5) +expns(3,6)
expnn(4) =expns(4,1) +expns(4,2) +expns(4,3) +expns(4,4) +expns(4,5) +expns(4,6)
expnm(5) =expns(5,1) +expns(5,2) +expns(5,3) +expns(5,4) +expns(5,5) +expns(5, 6)
expnn(6) =expns(6,1) +expns(6,2) +expns(6,3) +expns(6,4) +expns(6,5) +expns(6, 6)
expnm(7) =expns(7,1) +expns(7,2) +expns(7,3) +expns(7,4) +expns(7,5) +expns(7,6)
expnm(8) =expns(8,1) +expns(8,2) +expns(8,3) +expns(8,4) +expns(8,5) +expns(8, 6)
expnm(9) =expns(9, 1) +expns(9,2) +expns(9,3) +expns(9,4) +expns(9,5) +expns(9, 6)

expnn(10) =expns(10, 1) +expns(10, 2) +expns(10, 3) +expns(10, 4) +expns(10, 5) +expns(10, 6)
expnm(11) =expns(11, 1) +expns(11, 2) +expns(11, 3) +expns(11, 4) +expns(11, 5) +expns(11, 6)
expnnm(12) =expns(12, 1) +expns(12, 2) +expns(12, 3) +expns(12, 4) +expns(12, 5) +expns(12, 6)

The final example illustrates how the annual averages will be computed for the budget program's summary report:

Average Monthly Income ai ncom = SUM) (i ncom(n)) / nons: N
Average Monthly Expense : aexpnm = SUM n) (expnm(m)) / nons: N
Average Monthly Balance : abal ns = SUM nj (bal ns(m)) / nons: N

Recall that the arithmetic average of a set of values is the sum of the values divided by the number of values used in the
sum. The three equations above do just that; they sum up the monthly values and divide the sum by the number of months
used in the sum. The notation nons: N has a value equal to the number of elements in the selection vector for set nons
(which may be changed by a set selection statement).

It is also possible to define your own functions in PROMULA to use in equations. Defining functions in PROMULA is
done with the DEFINE FUNCTION, and DEFINE L OOK UP statements.

For more information on writing equations, see the discussion of the PROMULA nouns Equation and Expression and the
COMPUTE statement.

2.2.4. Report Generation

KEY TOPICS:

1. Writing Variables
2. Saving Reports on Disk
3. Plotting Variables

Report generation is a critical part of any application program. An application must be able to generate reports that are of
interest to someone or it is not worth writing. PROMULA provides several report generation statements that can manage
multidimensional data for you, as well as aflexible WRITE statement that can be used for complicated or fancy text report
generation. Thereisalso aPLOT statement that can be used to generate a variety of graphic reports.

2.2.4.1. Writing Variables

The budget program computes the monthly expenses, income, and balance as well as the annual total and average expense,
income, and balance. These values can all be displayed in a single one page summary report.

There are several ways to generate such a report. The technique used in the budget program is to collect the values of the
three monthly variables in atwo-dimensional (12 x 3) array. The rows of this array are classified by the months of the year,
the columns of the array are classified by the three output categories: Income, Expenses, and Balance. The statements
required to define this array are shown below:

DEFI NE SET

nons(12) "Mont hs”

col m(03) "Report table Col ums"
END SET

DEFI NE VARI ABLE

37

Promula Application Development System User's Manual

rtabl (nons, col m) TYPE=REAL(15,2) "Sunmary Tabl e"
nonsn(nons) TYPE=STRI NG 4) "Month Names"
END VARI ABLE

READ col m KEY(1, 10, 10)
| NCOVE

EXPENSES

BALANCE

READ nonsn: 4
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

SELECT KEY(nons, nonsn)

The DEFINE SET and DEFINE VARIABLE statements above define a two-dimensional variable called rt abl , and a
variable for the month labels called monsn. A READ set statement is used to assign labels to the elements of set col m A
READ variable statement is used to read in labels for the elements of set nons. Finally, a SELECT RELATION
statement relates the month labels to the set nons.

After computing the values of the output variables, they can be passed to the variabler t abl using the following equations.

rtabl(m1) = incom(m
rtabl (m2) = expnnm({m
rtabl (m 3) = balns(m

The three equations above initialize all 36 values of variable rt abl : the first column picks up the values of variable
i ncom the second column picks up the values of variable expnni and the third column picks up the values of variable
bal ns.

The output report variable is now loaded and ready to be displayed. The final report is produced by the WRITE variable
statement below:

WRI TE rtabl,

TOTAL(nmons),

TI TLE(" Budget Sunmary"//,
ai ncom L"="ai ncon,
aexpnm L" ="aexpnnl,

abal ns: L"="abal ns)

The WRITE variable statement above includesthe TITLE and TOTAL options.

The TOTAL option tells PROMULA to report the specified totals along with the variable's values. In this case, only the
totals over set nons are desired so the nons set isindicated in parentheses following the keyword, TOTAL.

The TITLE option tells PROMULA to replace the default title for the variable (i.e., the variabl€e's descriptor) with the title
specification enclosed in the parentheses. In this case a five-line title is specified: the first line of the title contains the
words "Budget Summary"; the second line of the title is blank as indicated by the two slashes (//) — a slash character tells
PROMULA to go to the next line; the third, fourth, and fifth lines of the title contain the descriptors and values (separated
by equal signs) of the three annual average variables: ai ncom aexpnm abal ns. The notation ai ncom L is used to
identify the descriptor of the variable ai ncomin titles and other WRITE statements.

A typical budget program report (produced by the statement above) is displayed below:

Budget Summary

Average Monthly Income = 1,565.00
Average Monthly Expense = 1,001. 33
Aver age Mont hly Bal ance = 563. 67

38

Promula Application Development System User's Manual

I NCOVE EXPENSES BALANCE
Tot al 18, 780. 00 12, 016. 02 6, 763. 98
JAN 1, 580. 00 1, 028. 52 551. 48
FEB 1, 490. 00 1,032.03 457. 97
MAR 1, 580. 00 1,031.54 548. 46
APR 1, 580. 00 1, 006. 96 573. 04
MAY 1, 580. 00 973.91 606. 09
JUN 1, 550. 00 1,036.79 513. 21
JUL 1, 580. 00 971.61 608. 39
AUG 1, 580. 00 994. 50 585. 50
SEP 1, 550. 00 1, 018. 56 531. 44
oCcT 1, 580. 00 986. 85 593. 15
NoV 1, 550. 00 970. 06 579. 94
DEC 1, 580. 00 964. 70 615. 30

Figure2-12: Typical report produced by the Budget Program

PROMULA automatically computes and displays the columns totals, and centers the title and the table of values on the
screen. The formatting of the table values (i.e., awidth of 15 characters with two decimal digits) is also done automatically
according to the format type specified in the definition of variablert abl .

It is possible to rotate the dimensions of the WRITE variable display by specifying a set order different from the one used
in the definition of rt abl . For example, the report table could be displayed with months as the columns and the report
categories as the rows by the following statement:

WRI TE rtabl\10: 10(nons, col n), TOTAL(nons), TITLE("Budget Summary"//,
ai ncom L"="ai ncont ,
aexpnm L" ="aexpnnl,
abal ns: L"="abal ns)

This WRITE variable statement is almost exactly like the last one except that it includes a local format and set order
specification that will override the ones in the definition of variable rt abl . The format specification\ 10 means that the
row descriptors should have a width of 10 characters, and : 10 means that each column should have a width of 10
characters. The resulting display is shown below:

Budget Summary

Average Monthly Income = 1,565.00
Aver age Monthly Expense = 1, 001.33
Average Monthly Bal ance = 563. 67
Tot al JAN FEB MAR APR MAY JUN
| NCOVE 18,780.00 1,580.00 1,490.00 1,580.00 1,580.00 1,580.00 1,550.00
EXPENSES 12,016.02 1,028.52 1,032.03 1,031.54 1,006.96 973.91 1,036.79
BALANCE 6, 763. 98 551. 48 457. 97 548. 46 573. 04 606. 09 513.21
JuL AUG SEP oCT NOV DEC
| NCOVE 1,580.00 1,580.00 1,550.00 1,580.00 1,550.00 1,580.00
EXPENSES 971.61 994.50 1, 018.56 986. 85 970. 06 964. 70
BALANCE 608. 39 585. 50 531. 44 593. 15 579. 94 615. 30

For more information on writing reports, refer to Chapter 3 of this manual, especialy the WRITE variable, WRITE
TABLE, WRITE text, and WRITE menu statements. See also the DO DESCRIBE, DO CORRELATE, and DO
REGRESS statements for information about PROMULA's Statistical Report Generator.

39

Promula Application Development System User's Manual

2.2.4.2. Saving a Report on Disk

There are two ways of saving textual information on disk. One is by writing fixed format to a disk file using the WRITE
file statement. The other is by codirecting screen output to a disk file using the SELECT OUTPUT statement.

Using the WRITE file statement has the advantage that what is sent to the output file is not simultaneously displayed on
the screen. The disadvantage is that the WRITE file statement cannot be used with PROMULA's automatic report
generation statements like WRITE variable, and more explicit instructions are required to format the output. For example,
in order to write the values of the expns array to a text file with the WRITE file statement, the following code would be
required:

DEFI NE FI LE
tf TYPE=TEXT "A Text File"
END FI LE

OPEN tf "expns.dat" STATUS=NEW
DO nons
VWRI TE tf ((exps) (expns(nons, expns))
END nons
WRI TE t f (ai ncom ai ncon abal ns)
CLEAR tf

The contents of fileexpns. dat after execution of the above code is displayed below.

409. 00 286. 44 115. 39 97. 18 45. 00 66. 71
409. 00 269. 90 160. 10 81.95 45. 00 55.94
409. 00 291. 50 172. 05 77.12 45. 00 55. 24
409. 00 269. 86 111. 38 95.15 45. 00 67.92
409. 00 295. 66 89. 88 96. 78 45. 00 50. 37
409. 00 295. 24 146. 84 94. 36 45. 00 50. 98
409. 00 260. 47 142. 10 95.11 45. 00 52.52
409. 00 255. 69 141. 09 91. 46 45. 00 56. 32
409. 00 289. 86 87.59 92.76 45. 00 65. 28
409. 00 287.99 135.75 73.38 45. 00 64.77
409. 00 269. 20 96. 19 95. 47 45. 00 61. 09
409. 00 273. 29 145. 37 72.39 45. 00 63. 61
1565. 00

1565. 00

555. 77

Thisfile would be useful asan input file for another program, but it is not very interesting to look at.

If you want to take advantage of PROMULA's automatic report generation statements WRITE variable, WRITE menu,
and the Statistical Report Functions for the creation of report files, you may use the SELECT OUTPUT statement. This
statement can be used to create any text file that can be created with the WRITE file statement, and it can also be used to
send the results of any text display produced by PROMULA, including character graphics, multidimensional displays, and
data menu screens to a text file on disk. The disadvantage of this type of report generation is that output appears on the
screen asit is being sent to disk (although this problem can be gotten around with some sneaky windowing.)

For example, the statements required to reproduce the file expns. dat shown above are simply:

OPEN SELECT OUTPUT "expns. dat" PRI NTER=ON

DO nons

WRI TE (exps) (expns(nons, expns))
END nons
WRI TE (ai nconi ai nconi abal ns)

40

Promula Application Development System User's Manual

SELECT PRI NTER=OFF
The statements required to capture the typical budget program report in afile called budget . r pt are

OPEN SELECT OUTPUT "budget.rpt" PRI NTER=ON

WRI TE rtabl,

TOTAL(nmons),

TI TLE(" Budget Sunmary"//,
ai ncom L"="ai ncom ,
aexpnm L"="aexpnnt,
abal ns: L"="abal ns)

SELECT PRI NTER=OFF
For more information about saving a report on disk, refer to Chapter 3 of this manual, especially the WRITE variable,
WRITE TABLE, WRITE menu, WRITE fileand SELECT OUTPUT statements.

2.2.4.3. Plotting Variables

PROMULA'sPLOT statement is used to generate graphs and charts. For example, the statement

PLOT BAR bal ns TI TLE("Budget Program -- "bal ns:L/abal ns:L" = "abal ns)

will display a bar chart of the monthly balance variable, bal ns.
This sample PROMULA bar plot is displayed below.

The PLOT function has many options and is fully discussed in Chapter 3 of this manual.

2.2.5. Interface Design

KEY TOPICS:

1. Interactive and Noninteractive Programs
2. Selections

3. Editing Data

4. Multi-page Displays and Windowing

2.25.1. Interactive and Noninteractive Programs

The interface of a program is the way in which it interacts with its users (i.e., how it receives and transmits information).
Application program interfaces can be classified as being interactive, noninteractive, or a mixture of the two.

Noninteractive applications are controlled by the instructions they receive from an external text file. These files usually
contain information that tells the program what to do and what data values to use as inputs. Noninteractive programs can be
inflexible because they can only be told to do things that they can read from their command files. They may also be hard to
use if they require the user to create complicated control files. On the other hand, noninteractive programs are sometimes
more convenient than interactive ones since they can run without a user present.

Interactive applications are typically controlled by commands entered with a keyboard or mouse. Such programs conduct a
dialog with the user by displaying menus, asking questions, presenting screens to the user and reacting to the user's
responses. Interactive programs can be more responsive and permissive than noninteractive ones, and they are often easier
for non-programmers to use effectively.

41

Promula Application Development System User's Manual

Noninteractive applications usually require only four of the five basic programming tasks: data definition, program control,
data manipulation, and report generation. The fifth basic programming task, interface design, is optional and is needed only
if you want to create interactive applications.

Interface design involves setting up the screens through which program users can control the program and implementing
the structures that control these screens.

There are two basic actions that an interactive program interface must support: displaying information on the screen and
getting information from the user. These two tasks are often intimately related since the program may display information
on the screen in order to instruct the user about what information is required and how it should be provided. Furthermore,
the course of action through the program depends on the user's responses. Getting information from the user usualy takes
one of two forms: letting the user make selections, and letting the user enter data.

2.2.5.2. Selections

Most selections fall into one of the following categories:

1. selecting from afixed number of options,
2. selecting aprogram variable for input or output purposes,
3. selecting one or more elements from a variable number of options.

2.25.2.1 Selecting from a Fixed Number of Options

Most interactive programs require the user to select from a fixed set of options. PROMULA provides several ways to do
this. The simplest is with the ASK statement. The ASK statement is an interactive conditional branch statement that asks
the user to enter a choice then branches according to the response. For example, a ssimple program interface may offer the
following options: edit inputs, calculate results, view outputs, and exit. The following procedure contains an ASK
statement that could be used to let the user select one of these options and branch accordingly:

DEFI NE PROCEDURE aski t

WRITE ("E>dit inputs; Calcul ate; V>iew outputs; or press [End] to exit"/)

ASK " Pl ease enter your selection."” END
BREAK aski t

ELSE E

* statenents for editing inputs

ELSE C

* statenents for cal cul ations

ELSE V

* statenents for view ng outputs

END ASK

aski t

END PROCEDURE aski t

Another ssimple way of letting the user select from a fixed set of options is with a Pick Menu. The code below illustrates
how to implement a pick menu that offers the same options as procedure aski t above.

DEFI NE VARI ABLE
choi ce
END VARI ABLE

DEFI NE MENU pi ckmrenu
1 \Exit \
2 \Edit inputs\
3 \ Cal cul at e\
4 \ Vi ew out put s\
END

42

Promula Application Development System User's Manual

DEFI NE PROCEDURE nenui t
SELECT pi ckmenu(choi ce)
DO IF PICK EQ 1
BREAK nenui t

ELSE PICK EQ 2
* statenents for editing inputs
ELSE PICK EQ 3
* statements for cal cul ati ons
ELSE PICK EQ 4
* statenents for view ng outputs
END | F

menui t

END PROCEDURE nenui t

2.25.2.2 Selecting Variables

Often it is desirable to help the user select a program variable for input or output operations. PROMULA has two constructs
that may be used to implement this type of selection. The first is an extension of the ASK statement; the second is the
SELECT indirect statement.

For example, assume your program has three variables a, b, and ¢, and you want to help the user select one of the variables
for display on the screen. The simplest way to do thisiswith a SELECT indirect statement. The statements required to use
the SELECT indirect statement in this capacity are listed below:

DEFI NE VARI ABLE

a a
b "b"
c "c"

indir* "An Indirect Variable"
END VARI ABLE

DEFI NE PROCEDURE sel var
SELECT indir(a,b,c)
DO | F END
BREAK sel var
END
WRI TE indir
END PROCEDURE sel var

You may notice that the definition of variable i ndi r looks different from other variables defined in this chapter — it has
an asterisk (*) at the end of its identifier. This tells PROMULA that i ndi r is an indirect. Indirects can "point" to other
variables. Once they are pointing at a variable, statements using the indirect will use the variable it points to instead of the
indirect itself. The PROMULA statements that can use indirects in this manner are the WRITE variable, BROWSE
variable, EDIT variable, READ variable, SORT, SELECT set IF, and PLOT statements. Thus, one indirect can be
used for the general input/output needs of many program variables.

The statement SELECT i ndi r (a, b, c) will clear the Main Screen (see Advanced Windowing) and list the identifiers and
descriptors of variables a, b, and ¢ for selection. A prompt will appear at the bottom of the screen describing how to select
avariable by moving to the desired variable with the arrow keys and pressing the Enter key.

The second way to let the user select from alist of variables is to use the ASK statement with a VARIABLE = indirect
option. This method also assigns an indirect to the selected variable, but the Main Screen is not automatically cleared, and
the variables are not automatically listed for selection. The statements required to implement a variable selection routine
using the ASK statement are shown below:

DEFI NE VARI ABLE
a "a"
b "b"

43

Promula Application Development System User's Manual

c "c"
indir* "An Indirect Variable"
END VARI ABLE

DEFI NE PROCEDURE askvar

AUDI T VARI ABLE(a, b, ¢)

ASK "Enter desired variable nanme or Press End to Exit" END
BREAK askvar

ELSE VARI ABLE=i ndi r
WRI TE indir

END ASK

END PROCEDURE askvar

Procedure askvar above uses the AUDIT VARIABLE statement to list the identifiers and descriptors of variables a, b,
and c on the screen. The ASK statement supplies the prompt indicating how to select a variable, picks up the user's
selection, and assignsittoi ndi r.

2.25.2.3 Selecting Set Elements
Frequently, it is useful to let the user make selections from program sets, and there are several PROMULA statements that
can be used to implement this type of selection. These include the SELECT ENTRY, SELECT SET, SELECT
VARIABLE, and ASK statements.

The SELECT ENTRY statement is the simplest of these and is used to help the user pick a single element of a PROMULA
set from an interactive selection list.

The SELECT SET statement is similar to SELECT ENTRY except it allows the user to pick several elements of a
PROMULA set from an interactive selection list.

The SELECT VARIABLE statement automatically prompts the user to make selections from all the sets dimensioning a
specified variable.

The ASK statement with the SET=set option can be used to allow the user to make selections from the specified set.

More information and examples of these statements are available in Chapter 3.

2.2.5.3. Editing Data

One of the most critical of all interface functions is editing data. PROMULA offers a general purpose data editor that
facilitates interactive data editing for PROMULA's multidimensional array variables. For example, the statement

EDI T expns

will display the array variable expns for interactive spread-sheet style data editing. The editing screen is displayed below.

44

Promula Application Development System User's Manual

Mont hly Expenses by Category (%)

RENT FOOD CAR SERVI CE UTILITIES CAR I NS
JAN ™ 409. 00 286. 64 143.71 86. 87 45. 00
FEB™" 409. 00 276.76 166. 28 84.78 45.00
MAR ™~ 409. 00 280. 81 134. 35 96. 84 45. 00
APR™~ 409. 00 294.05 99. 55 98. 06 45. 00
VAY™ 409. 00 286. 98 88. 13 86. 77 45. 00
JON™T 409. 00 275. 43 152. 85 98. 06 45. 00
JoL T 409. 00 269. 81 103. 88 87. 47 45. 00
AUG™ ™ 409. 00 289.93 127. 67 72.28 45. 00
Sgp~° 409. 00 261. 35 171.10 76. 47 45. 00
ocr™ 409. 00 258.71 127.52 88. 28 45. 00
NOV™ ™ 409. 00 250. 12 105. 25 91. 41 45. 00
DEC™" 409. 00 272.28 93. 81 93.93 45. 00

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Select Enter:

Note that, like the WRITE variable statement, the EDIT variable statement uses the information in the variable's
definition to control the appearance of the report.

In addition, your application can use data menus for data entry. Data menus make data entry easier and improve the
appearance of the application. PROMULA's DEFINE M ENU statement |ets you create data menus simply by typing them
into your source code. The EDIT menu statement is then used to help the user interactively edit information in the menu.

To help the user edit several variables at once, you may use the EDIT table statement.

2.2.5.4. Multi-Page Displays and Windowing

The typical computer terminal is only large enough to display 24 or 25 lines of 80 characters. This can make it difficult to
let the user view large arrays or reports on the screen. Fortunately, PROMULA has several statements which can make this
difficult task easier.

The BROWSE variable statement can be used to let the program user interactively view a multidimensional array variable.
This statement manages a display similar to the one generated by the EDIT variable statement except it does not let the
user change data values

If you want to let the user browse more than one variable on the screen at the same time, the BROWSE TABLE or
BROWSE menu statement can be used.

The BROWSE FILE statement can be used to let the program user view multi-page free form textual reports contained in
external fileson disk. The RUN EDITOR command can be used to load atext file into the PROMULA Text Editor.

If you want to create dynamic, multi-color, multi-window displays, you may use PROMULA's DEFINE WINDOW and
OPEN WINDOW statements. To find out more about PROMULA's windowing statements see the discussions of Basic
and Advanced Windowing, and the PROMULA statements DEFINE WINDOW, OPEN WINDOW, and CLEAR
WINDOW.

45

Promula Application Development System User's Manual

2.2.6. Application Programming Summary

The discussion of application programming above is not intended to teach you how to program or to present the elements of
good programming style. These skills can only be devel oped through experience and practice.

From here, you should play with the source and executable versions of the budget program. These are included on the
PROMULA Sample Applications Disk in the files BUDGET. PRM and BUDGET. XEQ Y ou should also browse through the
contents of Chapter 3, the PROMULA language reference. Refer to Table 3-3 for a brief description of all the statements
of PROMULA. Once you have an idea of the statements available to you, try writing your own applications. Before you
start writing large scale applications, refer to Chapter 4 for a discussion of database management and program management
issuesin PROMULA.

46

Promula Application Development System User's Manual

3. PROMULA LANGUAGE REFERENCE

The purpose of this chapter is to provide the detailed information you need to use the statements of PROMULA and write
PROMULA applications. It is your reference chapter for the structural elements of the PROMULA language — its nouns
and verbs — and it describes the syntax and use of PROMULA statements. The chapter is divided into two sections:

1. ThePROMULA Nouns

This section defines the nouns, or objects, of PROMULA and gives some information about their use in PROMULA
programs.

2. The PROMULA Statements

This section discusses the purpose, syntax, and other information relevant to the PROMULA statements. Most of the
statements are illustrated by examples. The contents of each section are presented in alphabetical order.

3.1 ThePROMULA Nouns

The nouns, or objects, of the PROMULA language are listed in Table 3-1. These are the structural elements of PROMULA
programs. The information of a PROMULA programis stored in these elements.

Table 3-1: TheNouns, or Objects, of the PROMUL A L anguage

Equation

File

Function

Menu

Parameter
Procedure
Program

Relation

Segment

Set

Statement

An identity relationship between one variable and an expression of other variables and/or constants
involving arithmetic, relational, functional, and logical operators.

A place on disk for storing information. PROMULA uses three types of files: data files for storing
variables, segment files for storing code segments, and dialog files for storing tutorials.

Anintrinsic or user-defined operator which returns a single value depending on the values of its arguments.
The returned value is computed according to the functional relationships of the operator.

A screen template designed to help its user either pick from a list of options or view and/or edit program
variables. There are two types of menus: pick menus and data menus.

A variable that allows the transfer of values between a program variable and a procedure.

An ordered set of statements that is compiled and executed as a unit.

An ordered set of statements.

A relationship between a set and avariable. Its purpose isto assign descriptors to the set elements.

A program segment that may be saved on disk for later execution. Segments are usualy linked into
hierarchical tree structures to form large programs that would not otherwise fit in the working space.

An ordered set of elements. Sets are used to dimension the values of array variables. Sets are also used for
sorting and selecting ranges of array values.

A completeinstruction ina PROMULA program.

47

Promula Application Development System User's Manual

Table 3-1: TheNouns, or Objects, of the PROMULA L anguage

System A system of n real equations with n unknowns whose solution is obtained by solving simultaneoudly for the

unknowns. The equations may be linear or nonlinear.

Table A tabular display or report showing the values of several variables.

Variable A storage structure for information. Variables are manipulated by the statements of a program and are related

to one another by the equations of a program.

Window A display area for program input and/or output. Basic Windowing supports two functional screens:. the

Action Window (upper half of the screen) and the Comment Window (lower half of the screen). Advanced
Windowing supports a system of four functional screens: Main, Prompt, Comment, and Help. The
appearance, location, and behavior of each functional screen is set by defining and opening a specific window
for it.

3.1.1 Equation

Purpose:

Makes the value (or values) of a variable equal to the value (or values) of a numeric or character expression.

Syntax:
var [(subs)] =expressi on[(subs)]

Remarks:

var isavariableidentifier.

subs is alist of set identifiers, set element codes or numbers, or dummy subscripts. These subscripts are
usually used with array variables to denote multiple equations that apply to the cells of the
multidimensional arrays.

expressi on isanumeric or character expression.

Examples:

1. Single-valued equations

Below, a, b and ¢ are scalars because there are no sets used in their definitions. Each equation is only done once, and
only one value is assigned.

DEFI NE VARI ABLE
a
b
Cc

END VARI ABLE

a=b+c : aisequaltothesumofbandc
a = b*EXP(c): aisegua tob timesthe exponential of c
a=DbLTc : aisequatolifbislessthanc; otherwise aisequal to0

Multiple-valued equations using implicit subscripts

48

Promula Application Development System User's Manual

Below, Aand B are both arrays containing six values.
DEFI NE SET
row(3)
col (2)
END SET
DEFI NE VARI ABLE
A(row, col)

B(row, col)
END VARI ABLE

The eguation

A=1
makes all six values of array A equal to 1. The subscriptsrowand col areimplicit.
Similarly, the equation

A=1B

makes al six values of array A equal to the corresponding values of array B. It does the same work as the following six
equations.

A(1,1) = B(1,1) A(1,2) = B(1,2)
A(2,1) = B(2,1) A(2,2) = B(2 2)
A(3,1) = B(3,1) A(3,2) = B(3,2)

Multiple-valued equations using dummy subscripts

The eguation
A(r,c) = B(r,c)

makes all six values of the A array equal to the corresponding values of the B array. The subscriptsr and ¢ are dummy
subscripts that stand for ther owand col sets.

A Character Equation

Given the following definitions and data:

DEFI NE VARI ABLE
A TYPE=STRI NG 20)
B TYPE=STRI N& 20)
C TYPE=STRI NG 40)
END VARI ABLE

READ A
The cow j unped ov

READ B
er the noon.

the equation
C = AtB

will put the concatenation of strings A and B into variable C.

49

Promula Application Development System User's Manual

WRI TE C
The cow j unped over the noon.

5. A Mixed Character and Numeric Variable Equation

PROMULA is a "loose" typing language. This means that you may mix variables of different types in your
expressions, PROMULA will make the appropriate conversions for you. For example it is possible to write expressions
using variables of type STRING or DATE with variables of the numeric types: REAL, INTEGER, and MONEY . If
a numeric variable is on the left-hand side of an expression, any string type variables on the right-hand side of the
expression containing all numerals will be converted to their numeric values when the result is computed. Similarly, if
a string variable is on the left-hand side of an expression, the results of numeric expressions on the right-hand side are
computed then converted to their numeral string values before they are passed to the left hand side.

DEFI NE SET

pnt (4)
END SET

DEFI NE VARI ABLE
stri(pnt) TYPE=STRI NG 20) "String Result"
numl(pnt) TYPE=REAL(10, 3) "1st Number”
num2(pnt) TYPE=REAL(10, 3) "2nd Nunber"
END VARI ABLE

numl(i) =i*2
nun(i) =i*3
str1(i) = nunl:-3:0(i) +" PLUS "+ nunmR:-3:0(i) +" = "+(numl(i)+nunR(i))

Given the definitions and assignments made above, the statement
WRI TE str1:-40

produces the output below.

String Result

PNT(1) 2 PLUS 3 = 5.000
PNT(2) 4 PLUS 6 = 10.00
PNT(3) 6 PLUS 9 = 15.00
PNT(4) 8 PLUS 12 = 20.00

3.1.2 Expression -- Arithmetic
Definition:

A numeric expression involving at least one arithmetic operator. The operands of arithmetic expressions may be variables,
congtants, functions, and other expressions.

Remarks:

The arithmetic operatorsin order of precedence are:

OPERATOR EXPRESSION PRECEDENCE MEANING

*x A**B 1 Raise A to the B power

50

Promula Application Development System User's Manual

+ 1=

A*B
A/B

A-B
A+B

wWwnNh DN

Multiply A times B
Divide A by B
Subtract B from A
Add A toB

The above precedence may be altered by parentheses. In cases of equal precedence the order of evaluation is from left to
right. The SELECT HIERARCHY=ON statement causes operator precedence to be determined by the (left to right) order
of operatorsin the expression..

Arithmetic expressions may have other numeric expressions as operands.

3.1.3 Expression -- Boolean

Definition:

An expression involving variables, constants, functions, relational and logical operators, and other expressions. A Boolean
expression is either true or false. If true, it hasthe value 1; if false, it has the value O.

Remarks:

Therelational operators are:

OPERATOR EXPRESSION MEANING
LT ALTB A lessthan B
LE ALEB A lessthan or equal to B
EQ AEQB A equa to B
NE A NEB A not equal to B
GE A GEB A greater than or equal to B
GT AGTB A greater than B
Thelogical operators are:
OPERATOR EXPRESSION MEANING
NOT NOT A .if Alisfalse; O otherwise
AND A ANDB .if A and B are true; 0 otherwise
OR AORB .if A or Bistrue; 0if both are false

A and B may be Boolean variables or Boolean expressions.

3.1.4 Expression -- Character

Definition:

51

Promula Application Development System User's Manual

A formula consisting of character variables and character operators.
Remarks:

A character expression has character operands. Some character expressions have character values; others have numeric
values.

PROMULA has the following character operators:

OPERATOR EXPRESSION MEANING
+ A+B Concatenate B to A
COMPARE COMPARE(A,B) Compare string A to string B; return thevalue 1 if A
equals B, otherwise return the value 0.
Relational A GT B,A GEB, Evaluates the relationship between A and B, the
A EQB, ANEB, result is 1 if the relationship is true, otherwise the
ALEB,ALTB result isO.

Here, A and B are string or numeric expressions. If either A or B is a character expression, the result is the string
concatenation of B to A. If both A and B are numeric expressions, the result is the arithmetic sum of A and B.

Examples:

The dialog below illustrates some examples of character expressions and of mixed (numeric/character) expressions.

DEFI NE VAR ABLE
A TYPE=STRI N§ 20)
B TYPE=STRI NG 20)
C TYPE=STRI N§ 40)
v TYPE=REAL(8, 0)
END VARI ABLE

READ A

The cow j unmped ov
READ B

er the noon.

C = AtB

WRI TE C
The cow junped over the noon.

\%
C

10
V¥20 + V

WRI TE C
210

The eguation

52

Promula Application Development System User's Manual

V = COVPARE(A, B)
returnsV = 0, sincestring A isnot equal to string B.
It isalso possible to use PROMULA's COM PARE function with a quoted string as illustrated in the example below.

DEFI NE VARI ABLE
rsp TYPE=STRI N& 8)
END VARI ABLE

DEFI NE PROCEDURE conp
WRI TE "Do you agree? (Y/N"
READ rsp
DO | F COVPARE(rsp, "Y")
WRI TE ("Why do you agree?")
ELSE COVPARE(rsp,"N'")
WRI TE ("Why don't you agree?")
END | F
END PROCEDURE conp

NOTE: The COMPARE function is obsolete; it is retained for compatibility with older versions of PROMULA. It is now
possible to use the relational operators EQ, NE, LT, etc. to compare string expressions.

PROMULA isa"loose" typing language. This means that it is allowed to mix character variables and numeric variablesin
the same expression. In fact, you may use character variables that contain numeric data as if they were numeric variables.
Although there are some limitations on the use of these mixed expressions, one useful application is the generation of
numbered lists.

DEFI NE SET

row(8)
END SET

DEFI NE VARI ABLE
str(row) TYPE=STRI NG 10)
val (row) TYPE=I NTEGER(1)
END VARI ABLE
val (i) =i

str="team# " + val

WRI TE str
ROV 1) team# 1 ROW 2) team # 2
ROW(3) team# 3 ROW(4) team# 4
ROW(5) team# 5 ROW(6) team# 6
ROV 7) team# 7 ROW(8) team# 8

3.1.5 Expression -- Functional

Definition:

An expression involving at least one functional operator.
Remarks:

The built-in functional operators of PROMULA are of three types:

53

Promula Application Development System User's Manual

1. Arithmetic functions
2. File management functions

3. ThelINDIRECT function

Also, you may define your own functions by using the DEFINE PROCEDURE statement and parameters, or by using the
DEFINE FUNCTION statement.

3.1.5.1 Arithmetic Functions
The built-in arithmetic functional operators of PROMULA are listed in Table 3-2 below

Table3-2: The Arithmetic Functional Operators of PROMULA

Functional Expression MEANING
ABS(X) Absolute value of x
ARCCOS(x) Angle (in radians) whose cosine is x
ARCSIN(X) Angle (in radians) whose sineis x
ARCTAN(X) Angle (in radians) whose tangent is x
COMPARE(x,y) Compare string x to string y; returns the value 1 if x=y, otherwise it returns the value 0.
(Note: COMPARE is obsolete; use (x EQ y)
COS(x) Cosine of x (x in radians)
COTAN(X) Cotangent of x (x in radians)
EXP(x) Exponential of x (€X)
FLOOR(X) Integer nearest to x that does not exceed x
IFIX(X) Integer nearest to x that does not exceed the magnitude of x
LN(x) Natural logarithm of x, base e (e = 2.718282)
LOG(x) Common logarithm of x, base 10
MAX(@i)(x(1)) Maximum element of vector x(i)
MIN@)(x(i)) Minimum element of vector x(i)
PRODUCT (subs)(x(subs)) Multiply over the elements of x, where
X iSan array or array expression
subs isalist of subscripts classifying the elements of x.
RANDOM (arg) Random number. Result depends on number of parameters specified in arg.
ROUND(x) Integer nearest to X
SIN(X) Sine of x (X in radians)
SQRT(X) Square root of x
SUM (subs)(x(subs)) Sum over the elements of x, where
X isan array or array expression
subs isalist of subscripts classifying the elements of x.
TAN(X) Tangent of x (X in radians)
XMAX(X,Y,...) Maximum of x,y,...

Minimum of x,y,...

Examples:

1. The ROUND, FLOOR, and IFIX functions are illustrated in the example below. These three functions are similar in
that they all return integers, but they have subtle differences.

FLOOR(x) Returns the integer nearest to x that does not exceed x.

54

Promula Application Development System User's Manual

[FIX(X) Returns the integer nearest to x that does not exceed the magnitude of x. In other words, 1FIX(X)
truncates the decimal part of x.

ROUND(x) Returns the integer nearest to x.

DEFI NE VARI ABLE
X
a
b
Cc
END VARI ABLE

DEFI NE PROCEDURE cal c

a = FLOOR(x)

b = ROUND(x)

c = | FI X(x)

WRI TE (x:5:2 a:12:2 b:12:2 c:12:2/)
END PROCEDURE cal ¢

DEFI NE PROCEDURE t est

WRI TE "x FLOOR(x) ROUND(x) I FI X(x)"
£ = = "
X = -2.25

calc

X = -2.50

calc

X = -2.75

calc

X = 2.25

calc

x = 2.50

cal c

X = 2.75

cal c

END PROCEDURE t est

The output of proceduret est isdisplayed below.

X FLOOR(x) ROUND(x) I FI X(x)
225 300 2,00 2200
-2.50 -3.00 -3.00 -2.00
-2.75 -3.00 -3.00 -2.00
2.25 2.00 2.00 2.00
2.50 2.00 3.00 2.00
2.75 2.00 3.00 2.00

2. Using the SUM Operator

The SUM operator is used to sum the values of multidimensional expressions.

DEFI NE SET
row(3)

55

Promula Application Development System User's Manual

col (2)
page(2)
END SET

DEFI NE VARI ABLE
AAA(row, col , page) "A 3-dinmensional Array" VALUE = 1

AA(row, col) "A 2-di nensi onal Array"
A(row) "A vector"
S "Sum of AAA"

END VARI ABLE

* For each row and col, sum AAA over page and place the result in AA
AA(r,c) = SUMp) (AAA(T, ¢, p))

* For each row, sum AAA over col and page and place the result in A
A(r) = SWMec,p) (AAA(r,c,p))

* Sum AAA over row, col and page and place the result in S.
S = SUMr, c, p) (AAA(r, c, p))

The results of the definitions and expressions above are illustrated in the dialog below.

VWRI TE AA
A 2-di mensi onal Array
COL(1) COL(2)
ROW(1) 2 2
ROW(2) 2 2
ROW(3) 2 2
WRI TE A
A Vector
ROW 1) 4
ROW(2) 4
ROW(3) 4
WRI TE S

Sum of AAA 12

3. Usingthe MIN and MAX Functions

The MIN and MAX operators may be used to find the minimum and maximum values of multidimensional
expressions respectively. Thisis demonstrated in the dialog below.

READ A
1234567432

S = MNT)(A(r))
WRI TE(/ " The m ni mum val ue in vector Ais ",S/)

The mnimumvalue in vector Ais 1

S = MAX(r) (A(r))

56

Promula Application Development System User's Manual

WRI TE(/ " The maxi rumval ue in vector Ais ",S/)

The maxi num value in vector Ais 7

4. Writing Y our Own Functions

DEFI NE PROCEDURE nod
DEFI NE PARAMETER

m
Z
O
3
%
—
m
Ry

The procedure nod defined above computes the value of the first parameter modulus the second parameter, and returns
theresult in the third parameter. A sample dialog with procedure nod is shown below.

DEFI NE VARI ABLE
avar
bvar
cvar

END VARI ABLE

avar =27
bvar =11
MOD(avar , bvar, cvar)

WRI TE(/ avar: 0: 2" MOD "bvar:0:2" = "cvar/)
27.00 MOD 11.00 = 5

avar =47

bvar =13

MOD(avar , bvar, cvar)

VWRI TE(/ avar: 0: 2" MOD "bvar:0:2" = "cvar/)
47.00 MOD 13.00 = 8

avar =35

bvar =3

MOD(avar , bvar, cvar)

WRI TE(/ avar: 0: 2" MOD "bvar:0:2" = "cvar/)

35.00 MOD 3.00 = 2

5. Usingthe RANDOM Function.

The RANDOM function can take zero to three arguments.

NUMBER OF EXPRESSION VALUE RETURNED
ARGUMENTS

57

Promula Application Development System User's Manual

0 x=RANDOM a random number between 0 and 1 using the
current seed.

1 x=RANDOM(pl) a random number between 0 and 1 using pl as
the seed.

2 x=RANDOM (p1,p2) a random number between pl and p2 using the
current seed.

3 x=RANDOM(p1,p2,p3) arandom number between pl and p2 using p3 as
the seed.

The parameters (p1,p2,p3) may be numeric constants or variables. The seed is an internal PROMULA variable used by
the RANDOM function. The first time the random function is executed, the seed is zero.The RANDOM function
always returns the same value for a given seed and changes the internal seed each time it is executed. Several examples
are shown in the dialog below.

DEFI NE VARI ABLE
X "X=" TYPE=REAL(10, 5)
pl VALUE=1000
p2 VALUE=2000
p3 VALUE=3000

END VARI ABLE

Xx=RANDOM
WRI TE x
X= 0.73275

Xx=RANDOM
VWRI TE x
X= 0. 53517

Xx=RANDOM p1) Using the same seed, p1, gives the same result every time
WRI TE x
X= 0.71217

x=RANDOM p1)
WRI TE x
X= 0.71217

Xx=RANDOM p1, p2) With two parameters, RANDOM returns a random number

WRI TE x between p1 and p2 using the internal seed.
X= 1, 403. 12500

x=RANDOM p1, p2)
WRI TE x
X= 1, 009. 17900

Xx=RANDOM p1, p2, p3) With three parameters, RANDOM returns arandom

WRI TE x number between p1 and p2 using p3 as the seed.
X=1,671. 02100

Xx=RANDOM p1, p2, p3)
WRI TE x
X= 1, 671. 02100

58

Promula Application Development System User's Manual

6. Proceduref uncts below shows how avariety of PROMULA's arithmetic functions behave.

DEFI NE VARI ABLE
xvar "xvar "
avar "avar
bvar "bvar
cvar "cvar
drg "Factor Converting Degrees to Radians
END

drg=3. 1415 / 180

DEFI NE PROCEDURE funct s

cvar = 6

avar = EXP(cvar)

WRI TE(" The Exponential of"cvar\30:0:2,46" = "avar:0:4)

cvar = LN(avar)

WRI TE(" The Natural Logarithm of"avar\30:0:4,46" = "cvar:0:4)

cvar = 30

avar = Sl N(cvar*drg)

WRI TE(" The Sine Function of"cvar\30:0:2" degrees", 46" = "avar:O0: 4)
cvar = ARCSI N(avar) / drg

WRI TE(" The ArcSine Function of"avar\30:0:2,46" = "cvar:0:2" degrees")
avar = COS(cvar*drg)

WRI TE(" The Cosi ne Function of"cvar\30:0:2," degrees"46" = "avar:0:4)
cvar = ARCCOS(avar) / drg

WRI TE(" The ArcCosi ne Function of"avar\30:0: 4, 46" = "cvar:0: 2" degrees")
cvar = 45

avar = TAN(cvar*drg)

WRI TE(" The Tangent Function of"cvar\30:0:2," degrees"46" = "avar:O0:4)
cvar = ARCTAN(avar) / drg

WRI TE(" The ArcTangent Function of "avar\30:0: 4, 46" = "cvar:0:2" degrees")
cvar = 2

avar = SQRT(cvar)

WRI TE(" The Square Root of"cvar\30:0:2,46" = "avar:0:4)

avar = cvar**0.5

WRI TE(" The 1/2 Power of"cvar\30:0:2,46" = "avar:O0:4)

bvar = 3

avar = XM N(bvar, cvar)

WRI TE(" The M ni num of "bvar\30:0: 1" and "cvar:0: 1, 46" = "avar:O0:2)

avar = XMAX(bvar, cvar)

WRI TE(" The Maxi num of "bvar\30:0: 1" and "cvar:0: 1, 46" = "avar:O0:2)
END PROCEDURE f uncts
The output of procedure f unct s is displayed below.
The Exponential of 6. 00 = 403. 4288
The Natural Logarithm of 403. 4288 = 6.0000
The Sine Function of 30. 00 degrees = 0. 5000
The ArcSine Function of 0.50 = 30. 00 degrees
The Cosi ne Function of 30. 00 degrees = 0. 8660
The ArcCosine Function of 0. 8660 = 30. 00 degrees
The Tangent Function of 45. 00 degrees = 1. 0000
The ArcTangent Function of 1. 0000 = 45. 00 degrees
The Square Root of 2.00 = 1.4142
The 1/2 Power of 2.00 = 1.4142
The M ni mum of 3.0 and 2.0 = 2.00
The Maxi mum of 3.0 and 2.0 = 3.00

59

Promula Application Development System User's Manual

3.1.5.2 File Management Functions
PROMULA has six functional operators that can help you manage files.

FILEDELETE takes afile specification in quotes or a string variable containing a file specification as its argument and
deletes the file and returns 1 if the file was found or O if the file was not found in the current directory.

FILEEXIST takes a file specification in quotes or a string variable containing a file specification as its argument and
returns 1 if the file was found or 0 if the file was not found in the current directory.

FILEEXT takes a file specification in quotes or a string variable containing a file specification as its argument and
returns the file extension.

FILENAME takes a file specification in quotes or a string variable containing a file specification as its argument and
returns the file name.

FILEPATH takes a file specification in quotes or a string variable containing a file specification as its argument and
returns the file path.

FILESIZE takes the identifier of arandom file asits argument and returns the number of recordsin thefile.

GETDIR takes a file specification in quotes or a string variable containing a file specification (wild card characters
work here) as its argument and generates a selection list in the main screen if any files are found. The
user's selection is stored in the string variable that is assigned to the function. This value can be
systematically disassembled into its components by the FILEEXT, FILENAME, and FILEPATH
functions.

Example:

The FILEEXIST, FILEDELETE, and FILESIZE functions areillustrated by the examples below:

* Create and open two array files and one randomfile.
DEFI NE FI LE

filel TYPE=ARRAY

file2 TYPE=ARRAY

file3 TYPE=RANDOM
END FI LE

OPEN filel "filel.dba" STATUS = NEW
OPEN file2 "file2.dba" STATUS = NEW
OPEN file3 "file3.ran" STATUS = NEW
DEFI NE VARI ABLE
f exi st "File Exist Status ="
fdelete "File Delete Status ="
records "Nunmber of records in a randomfile ="
f nanme TYPE=STRI NG(20) "File Nane"

END VARI ABLE

Check whether or not afile exisss— The FILEEXI ST Function

fname = "filel. dba"
fexist = FILEEXI ST(fname)
WRI TE f exi st

File Exist Status = 1

fexist = FILEEXI ST("filel.xxx")
WRI TE fexi st
File Exist Status = 0

60

Promula Application Development System User's Manual

Delete afile— The FILEDELETE Function

fdel ete = FI LEDELETE(fnane)
WRI TE fdel ete

File Delete Status = 1

fdelete = FI LEDELETE("fil e2.xxx")
WRI TE fdel ete

File Delete Status = 0

Size of arandom file— The FILESI ZE Function. fi | e3 isempty so it hasasize of zero

records = FILESI ZE(fil e3)
WRI TE records

Nunber of records in a randomfile = 0

The GETDIR, FILEEXT, FILENAME and FILEPATH functions areillustrated by procedurefi | ef unc in the example
below:

DEFI NE VARI ABLE
srch TYPE=STRI N 25) "Search Path
fspec TYPE=STRI NG 25) "Selected File Specification
fpath TYPE=STRI NG 25) "Selected File Path
fnane TYPE=STRING 9) "Selected File Nane
fextn TYPE=STRING 4) "Selected File Extension
END VARI ABLE

DEFI NE PROCEDURE fi | ef unc

srch = "* txt"

fspec = GETDI R(srch)

DO | F NULL
WRI TE("NO FI LES MATCH') CLEAR(-1)
filefunc

END

DO | F END
WRI TE("NO FI LE SELECTED') CLEAR(-1)
BREAK fil efunc

END

fpath = FI LEPATH(f spec)
fname = FI LENAME(f spec)
fextn = FlI LEEXT(f spec)

WRI TE srch: -25

WRI TE fspec: -25
WRI TE f pat h: - 25
WRI TE f nane: -10
WRI TE fextn:-4

WRI TE CLEAR(-1)
filefunc

END PROCEDURE fi | ef unc

61

Promula Application Development System User's Manual

The GETDIR function searches the specified directory for files that match the search mask. If any files are found, the
Main Screen is cleared and the files are displayed for selection. The user can browse up and down this list then press the
enter key to select afile.

C:\ PRVMDOC\ PLTARR. TXT

C: \ PRVMDOC\ DEFSET2. TXT
C:\ PRVMDOQ\ PI E. TXT

C:\ PRVMDOC\ FI GLA. TXT

C: \ PRVMDOC\ HDRFTR. TXT
C: \ PRVDOC\ BI FUNC. TXT
C: \ PRVMDOC\ SUMOPR2. TXT
C:\ PRVMDOC\ M NVAX. TXT
C:\ PRVMDOC\ FI LEFUNC. TXT
C:\ PRVMDOC\ FI LFUNC2. TXT
C:\ PRVMDOC\ FI LFUNC3. TXT
C:\ PRVMDOC\ | NDI R, TXT
C:\ PRVMDOC\ FUNCCPRS. TXT
C: \ PRVDOC\ RANDOM TXT

C: \ PRVMDOC\ SUMOPRL. TXT
C: \ PRVMDOC\ SUMOPR3. TXT
C: \ PRVMDOC\ OWNFUNCL. TXT
C: \ PRVDOC\ MODFUNC. TXT
C: \ PRVMDOC\ OWNFUNC2. TXT
C: \ PRVDOC\ NEWSTAT. TXT

End: Exit Arrows PgUp PgDn Hone: Move Enter: Select

You can use the DO IF NULL statement to test if any matches for the GETDIR search were found, and you can use the
DO IF END statement to test if the user pressed the End key instead of pressing Enter to make afile selection.

Assuming the user selects NEWSTAT. TXT from the list, the filename functions will break down the selected file
specification into its component parts and return the results to string variables on the left-hand side of the equations. The
WRITE statementsin proceduref i | ef unc display the following results.

Search Path = *. txt

Sel ected File Specification = C: \ PRVMDOC\ NEWSTAT. TXT
Selected File Path = C \PRVDCC

Sel ected Fil e Nane = NEWSTAT

Sel ected Fil e Extension = TXT

3.1.5.3 ThelINDIRECT Function

PROMULA allows you to assign place-holder variables to other variables using the ASK statement and the SELECT
indirect statement. These place-holder variables are called indirects. Indirects are defined as scalar variables that have an
asterisk (*) following their identifier. The INDIRECT function is used to determine if an indirect is assigned to a variable.
It isauseful accessory to both the ASK statement and the SELECT indirect statement. The syntax and use of this function
are described below:

Syntax:

INDI RECT(indir[,varlist])

Remarks:

62

Promula Application Development System User's Manual

indir isthe identifier of an indirect variable.

varli st isalist of variable identifiers.

The INDIRECT function returnsaoneif i ndi r isassigned to avariableinvar | i st ; otherwise it returns a zero.
Example:

Here isan example of using the INDIRECT function.

DEFI NE VARI ABLE

a "A value =" TYPE=REAL(10, 4) VALUE=1
b "B value =" TYPE=REAL(10, 4) VALUE=2
c "C value =" TYPE=REAL(10, 4) VALUE=3
indir*

END VARI ABLE

DEFI NE PROCEDURE sel var
SELECT i ndir
DO | F END
BREAK sel var
END
DO | F | NDI RECT(i ndir, a)
WRI TE ("You have sel ected variable A'/)
ELSE | NDI RECT(indir, b, c)
WRI TE ("You have sel ected variable B or variable C'/)
END | F | NDI RECT
WRI TE indir
WRITE (indir:L)
WRI TE (/"Press any key to continue") CLEAR(-1)
sel var
END PROCEDURE sel var

Execution of procedure sel var and selection of variable b produce the following results:

63

Promula Application Development System User's Manual

I dent Description

A A value =
B B val ue =
C Cvalue =

End: Exit Arrows PgUp PgDn Hone: Move Enter: Select

You have sel ected variable B or variable C

B val ue 2. 0000

B val ue

Press any key to continue

3.1.6 Expression -- Logical
Definition:

A numeric expression involving at least one logical operator. A logical operator operates on true-false expressions to
produce the value 1 if the resultant expression istrue, or the value 0, if the resultant expression is false.

Thelogical operators, in order of precedence, are:

OPERATOR EXPRESSION MEANING

NOT NOT A 1if A isfalse; 0 otherwise
AND A AND B 1if A and B are true; O otherwise
OR AORB 1if A or Bistrue; Oif both arefalse

64

Promula Application Development System User's Manual

A and B are evaluated as true-fal se expressions.

3.1.7 Expression -- Numeric
Definition:

A formula for computing a numeric value or values. It consists of a sequence of operands and operators. The operands may
be variables, constants, and other expressions. The operators specify the operation to be performed on the operands.

Remarks:

In order of precedence, the operators are shown in Table 3-3.

Operations at the same level of precedence in the list are performed in left to right order. To ater the order in which
operations are performed, use parentheses. Operations within parentheses are performed first. Inside parentheses, the above

order of operations is maintained. To force left-to-right precedence for all operators, execute a SELECT
HIERARCHY=0OFF statement.

Table 3-3: The Precedence of Operatorsin PROMULA

OPERATOR EXPRESSION PRECEDENCE MEANING
Functional
f() f(x) 1 Evaluate the function f(x)
Arithmetic
*x A**B 2 Raise A to the B power
* A*B 3 Multiply A times B
A/B 3 Divide A by B
- A-B 4 Subtract B from A
+ A+B 4 Add AtoB
-A 5 Take the negative of A
Relational
LT ALTB 6 A lessthan B
LE ALEB 6 A lessthan or equal to B
NE A NEB 6 A not equal to B
EQ AEQB 6 A equa to B
GE A GEB 6 A greater than or equal to B
GT AGTB 6 A greater than B
Logical
NOT NOT A 7 Not A
AND A AND B 8 A and B
OR A ORB 9 AorB

65

Promula Application Development System User's Manual

3.1.8 Expression -- Relational

Definition:

A numeric expression involving at least one relational operator. A relational expression compares two operands and is
either true, if the result of the comparison istrue, or false, if the result of the comparison isfalse. It has either the value 1, if
true, or the value O, if false.

Remarks:

Therelational operators are:

OPERATOR EXPRESSION MEANING

LT ALTB A lessthan B

LE ALEB A lessthan or equal to B

EQ AEQB A egua to B

NE ANEB A not equal to B

GE A GEB A greater than or equal to B

GT AGTB A greater than B
Examples:

1. Theexpression5 LT 7 hasthevauel (TRUE); theexpression5 GT 7 hasthe value 0 (FALSE).
2. Given the following definitions:
DEFI NE VARI ABLE
A(10)
B(10)
END VARI ABLE
A(i) =i
the equation
B=ALTS5

produces the following results:

>

A LT S B=A LT 5

True
True
True
True
Fal se
Fal se
Fal se
Fal se
Fal se
Fal se

QOwoo~NOUhWNE
[cNoNoNoNoNoN i ol

A

66

Promula Application Development System User's Manual

3.1.9 File

Definition:

A place on disk that storesinformation.

Remarks:

Files allow you to extend the storage available to your programs beyond the central memory of the computer. Files also
allow you to save information on disk for use at a later time. In addition, files are one means by which you may transfer
data to and from other programs or computers.

Y our computer has two kinds of memory:

1. Primary memory (also known as system memory, central memory, RAM (Random Access Memory), on-line memory,
core, or working space).

2. Secondary memory (& so known as disk memory, off-line memory, peripheral memory, or mass storage).

Since the access time for primary memory is faster than disk memory, primary memory is more expensive than disk
memory and, thus, it is available in relatively small quantities. At the time of this printing, a system memory of one
Megabyte (enough to store about one million characters) is average for a typical personal computer. Disk memory, on the
other hand, is relatively inexpensive and comes in the form of removable diskettes or fixed disks, which can hold many
megabytes of data; the smallest disk drives can hold ten Megabytes of data; the largest can hold severa thousand
Megabytes.

The extension of your programs to disk memory is inevitable, and for large-scale programing applications necessary. The
reasons for this are:

1. Programswritten and compiled now need to be saved for use later.

2. Large-scale programs are usually data intensive, often manipulating millions of data values during a single execution
cycle. It is usually impossible to store al of these values within the central memory of the machine, so off-line disk
storage is needed to extend the data storage area required by the execution of the program.

3. PROMULA datafiles need to be used by other software systems or programs written in other languages.

4. PROMULA programs need to use data created by other software or programs written in other languages.

PROMULA has a database manager and a program segment manager to help you manage your program if it becomes so
large that it does not fit in your working space.

Large program management is achieved by using files. PROMULA files can be classified as falling into one of the three
functional types:

1. Datafilesfor storing datain text or binary form.
2. Segment filesfor storing the executable code and data of PROMULA applications.
3. Dialog filesfor storing on-line help libraries.

The above three types of files, used aone or in combination, give you the flexibility and power to develop and manage
large-scale applications.

67

Promula Application Development System User's Manual

3.1.9.1 Data Files

Data files are used for the storage and retrieval of program data or variables; thus, they extend the data storage available to
aprogram.

Datafiles are of four types:

1. Text files of sequential-access records

2. Random files of direct-access records

3. Inverted filesthat index the records of random files

4. Array files of value-addressable multidimensional variables.
3.19.1.1 TextFiles

Text files are files that contain text and may be created and/or changed by atext editor. Text consists of ASCII codes; thus,
text files are also known as "ASCI| files".

Text files are sequential-access files of variable-length text records. Each record consists of data items that are laid out in
lines of variable length (up to a maximum of 255 characters).

Sequential access means that in order to access the (N+1)th record in the file you must first access the (N)th record.
Theitemsin atext record may be laid out by a person using atext editor, or by a computer program.

The DEFINE FILE statement defines atext file.

The OPEN file statement opens atext file for use.

The READ file statement reads data from artext file.

The WRITE file statement writes data to atext file.

The CLEAR file statement physically closes atext file, saving its current contents.

The DO file statement allows you to access all records of atext file in sequentia order (from Record 1 to Record N, where
N isthe last record of thefile).

3.1.9.1.2 Random Files

Random files are random-access files of fixed-length binary records. Each record consists of a fixed number of variables.
The variables of arandom file may be scalar items that each fill a single field and/or multidimensional arrays that fill many
fields. Random files may be used to build "relational databases’ (i.e., with atabular structure) in PROMULA.

Random-access means that you may access any record in the file arbitrarily without having to access all records beforeit in
the file. In this respect, they are more efficient than text files.

A record number is associated with each record in a random file. This number varies from 1 to N, where N is the total
number of records in the file. It is via the record number that you can access any record of the file in random-access
fashion.

68

Promula Application Development System User's Manual

The DEFINE FILE statement defines arandom file.

The DEFINE VARIABLE statement defines the record structure, i.e., the variables, of arandom file.
The OPEN file statement opens arandom file for use.

The READ file statement reads one complete record of datafrom arandom file.

The WRITE file statement writes one complete record of datato arandom file.

The CLEAR file statement physically closes a random file saving its current contents.

The SELECT file statement allows you to access at random any record in the file by specifying the desired record number.
It isthisfeature that distinguishes random files from text files.

The DO file statement allows you to access al records of a random file in sequentia order (from Record 1 to Record N,
where N isthe last record of thefile).

PROMULA random files may be used directly by programs written in languages such as FORTRAN and C. For example,
the FORTRAN READ statement can read PROMULA random files, provided you specify three parameters: the file name
(or number), the record number, and the record length (in bytes). The length of a record is simply the number of values in
the variables of the record multiplied by 4 (note that each character in a STRING type variable is considered as a value, so
that avariable with TY PE=STRING(10) has a length of 40 bytes).

3.1.9.1.3 Inverted Files

Inverted files offer a means to make rapid selections from a random file based on the values of variables in the records of
the random file.

Inverted files are used only by PROMULA, and are closely related to random files.

The DEFINE FILE statement defines an inverted file.

The OPEN file statement opens an inverted file for use.

The READ file statement reads data from an inverted file.

The WRITE file statement writes data to an inverted file.

The SELECT file statement makes selections from an inverted file.

The CLEAR file statement physically closes an inverted file, saving its current contents.

The DO file statement sequentially accesses the selected records of an inverted file.

The definition and use of Inverted filesisillustrated in the examples given in the SEL ECT file statement.

3.1.9.14 Array Files

Array files are value-addressable, random-access files that contain indexed, multidimensional arrays of data. Though stored
on disk, the variables of array files are defined via the DEFINE VARIABLE statement in the same way as program
variables that are stored in your working space. Obviously disk variables can store many more values than standard

program variables.

Though unique to PROMULA, array files may be converted to text data (ASCII files) for transfer to other programs or
other computers, using the COPY file and WRITE statements.

69

Promula Application Development System User's Manual

Moreover, the values of array files can also be used directly by programs written in other languages, such as C or
FORTRAN.

The method of access for array filesis direct — any array or any connected subset of an array may be accessed at random.
Array files are value-addressable; if desired, you may access information by single cell (or value).

The DEFINE FILE statement defines an array file.

The DEFINE VARIABLE statement defines the array structure, i.e., the variables, of an array file.
The OPEN file statement opens an array file for use.

The READ DISK statement reads data from an array file.

The WRITE DISK statement writes data to an array file.

The CLEAR file statement physically closes an array file, saving its current contents.

The COPY file statement allows you to display the contents of an array file or to copy an array file into another array file
or into atext file for transfer to other programs.

The AUDIT file statement allows you to list the contents of an array file.
A virtual access method is also available via the DISK option of the DEFINE VARIABLE statement. This allows you to

use the variables of array files without using explicit READ DISK and WRITE DISK statements. See Chapter 4 for
examples of this.

3.1.9.2 Segment Files

The code of any PROMULA program may be divided into a hierarchy. This is particularly useful when the program is
large, which happens when either the program code, the program data, or both, become larger than your working space.

Segment files are used for the storage and retrieval of program segments. They are needed primarily so that previously
written program segments can be saved and loaded for later use.

Segment files contain not only the executable code of a program, but also the values associated with the variables of the
program. By breaking a program into segments, you partition both the code space and the data (value) space for the
variablesin the code, thus extending both.

The OPEN SEGMENT statement opens a segment file on disk.

The DEFINE PROGRAM and DEFINE SEGMENT statements mark the beginning of a program segment.

The READ SEGMENT statement reads the information in a segment file from disk.

The END PROGRAM and END SEGMENT statements write a segment file to disk.

The READ VALUE and WRITE VALUE statements allow you to retrieve and update the variable values in a program
segment without explicitly accessing the variables themselves.

3.1.9.3 Dialog Files

Dialog files are on-line help files that can be accessed in a menu-driven or random manner. A dialog file is defined as a
collection of topics. Each dialog topic definition consists of:

70

Promula Application Development System User's Manual

1. A short title (up to 25 characters)
2. Thetopic text (which can have as many characters as you wish)

Upon execution, a dialog file will display its contents to the user in a menu-driven, conversational format — hence its
name.

Dialog files provide a powerful method of generating on-line, conversational help systems for your applications. They
provide a menu-driven framework for tutorials; all you need to do is type in the topic headers and the tutorial text.

A dialog fileisinitially defined as a series of topics viathe DEFINE DIALOG statement.

Upon execution of the BROWSE DIALOG statement, the topic titles form a menu from which you may select and browse
the topic texts. A specific topic may be displayed with the BROWSE TOPIC statement.

Dialog files are demonstrated in the examples givenin the DEFINE DIALOG statement.

3.1.9.4 Access Methods

PROMULA supports three basic ways to access the contents of a datéfile:

1. Sequential access — In text files. Here, information is accessed in terms of variable length text records. The records
are accessed in sequence, one record at a time, starting at 1 and ending at N, where N is the last record in the file.
Before accessing the (N+1)th record, you must first access the (N)th record.

2. Random access — In random files. Here, information is accessed in terms of structured fixed length binary records.
The records are accessed at random, one record at a time, by simply specifying the record number or by using an
inverted file to select the records of the file that contain afield that matches a specified key.

3. Direct access — In array files. Here, information is accessed in terms of variables, the notion of record does not
apply. The variables may be either single-valued (scalars) or multi-valued (arrays). Array file variables are value-
addressable, i.e., you may access single data cells (values) in them or any connected subset of their values.

For example, if A is a four-dimensional variable classified by row, column, page, and year, then you have the
following direct access options:

1. Youcanaccessall values of A.

2. You can access athree-dimensional part of it, say, al the rows, columns and pages for a particular year.

3. You can access atwo-dimensional part of it, say, al the rows and columns for a particular page and year.

4. You can access aone-dimensional part of it, say, all the yearsfor a particular row, column and page.

5. You can access asingle cell of it, say, the value for row=3, column=2, page=2, and year=10.

This kind of selectivity is particularly useful when you have very large arrays in your disk database that do not fit in

your working space. In addition to the direct access method, variables in array files may be accessed virtually or
dynamically vialocal variables. See Chapter 4 for details of this.

3.1.9.5 File Names
Each file has two names: alogical name and a physical name.

71

Promula Application Development System User's Manual

Thelogical name is the name by which the file is referenced in a PROMULA program. A logical name can be any string of
alphanumeric characters whose first character is alphabetic. Only the first six characters are significant.

The logical name for a segment file is introduced via the DEFINE SEGMENT statement. For unsegmented programs, the
DEFINE PROGRAM statement introduces a segment file with the logical name M AIN.

Thelogical name for adatafileisintroduced viathe DEFINE FILE statement.

The physical name is the name by which the file is known to the operating system. A physical file name must be specified
according to the file naming conventions of the particular operating system that you are using.

Before a given file can be accessed, it must be opened, i.e., declared to the operating system viaits physical file name.
The physical name of a segment file is specified viathe OPEN SEGMENT statement.

The physical name of adatafileis specified viathe OPEN file statement.

3.1.9.6 Interface PROMULA Fileswith Other Software

PROMULA text files may be used directly by other software or programs written in other languages, such as FORTRAN
and C.

In the case of text files, this interface is automatic. By definition, atext fileis afile that may be treated as text. To show its
contents, for example, you may use the TYPE, COPY, or PRINT command of your operating system. To change the
contents of atext file, you may use atext editor.

It is through text files that PROMULA communicates with other software, such as electronic spreadsheets, word
processors, and database managers.

To access PROMULA text files by programs written in other languages, such as FORTRAN or C, you need to use the
appropriate OPEN, READ, and WRITE statements of these languages.

Users of the virtual data management capabilities of the PROMULA language translators or the PROMULA Virtua
Memory Management Library may create C or FORTRAN programs that can access PROMULA's array databases.

3.1.10 Function

Definition:

A function is a curve on the (x,y) plane. It is defined by a set of points whose coordinates are given by the values of two
array variables, the x-variable and the y-variable.

Remarks:
The table of values below defines a function f(x):

A FUNCTION f(X)

X-VARIABLE | Y-VARIABLE
x(1) y(1)
x(2) y(2)

x(3) y(3)

72

Promula Application Development System User's Manual

x(n) y(n)

For an arbitrary argument x the function f(x) returns the value on the curve defined by the above table of points. The value
of the function is computed by using two-point linear interpolation between the points defining the function.

PROMULA alows multidimensiona arrays to be used as function value vectors provided that both arrays have the same
set classifying their first dimension.

Functions may be used in equations and conditional expressions.

The DEFINE FUNCTION and DEFINE L OOK UP statements define a function.
Expressions that act on their X and Y variables modify a function.

The READ function statement modifies afunction and its X and Y variables.

The WRITE function and BROW SE function statements display a function in tabular form.
The PLOT statement displays a function in graphical form.

3.1.11 Menu

Definition:

A screen template which is designed to help its user to either pick from alist of options or view and/or edit the values of
program variables.

Depending on content and intended use, there are two kinds of menus:

1. Pick menusfor helping the user select an option
2. Datamenusfor helping the user view and/or edit program variables

Menus are manipulated by several statements:

DEFINE MENU Defines a menu

SELECT menu Helps the user make a selection from a pick menu

EDIT menu Helps the user enter information into a data menu

READ menu Helps the user enter information into a data menu

WRITE menu Displays adata menu

BROWSE menu Draws a data menu then pauses until the next user event (keypress or mouse click)
SELECT PULLDOWN Creates and displays a pulldown pick menu for selection

SELECT FIELD Modifies the selection fields of asimple or popup pick menu

3.1.11.1 Pick Menus

Depending on thier definition and behavior, there are three types of pick menus:

1. Simple, one-window pick menus defined with abasic DEFINE M ENU statement

2. Popup, two-window pick menus defined with a DEFINE M ENU POPUP statement
3. Pulldown pick menus defined witha SELECT PULLDOWN statement

Simple and Popup pick menus are executed by the statement:

73

Promula Application Development System User's Manual

SELECT menu(opti on)
where nenu is the name of the menu, and opt i on isavariable that will contain the number of the selection picked.

Pulldown pick menus are executed by the statement:

SELECT PULLDOWN option = nenudesc

where nenudesc is the description of the pulldown menu, and opti on is a variable that will contain the number of the
selection picked.

In both cases, the value of opt i on may be used to determine alternative execution paths.

When displayed, all pick menus contain a number of selection fields. You may highlight the desired field by pressing the
arrow keys. To execute your selection, press the Enter key. For al pick menus, you may also chose an option by
positioning the mouse sprite over the desired field and clicking the mouse button. Simple and popup pick menu fields may
also be selected by single keypresses as described below.

Simple pick menus allow you to easily create a smple selection display. In these menus, a number of selection fields are
laid-out on a single screen template. Each selection field in the menu is text that is bracketed by two backslashes (\) in the
menu template. The selection fields are ordered from 1 to n as you go from left to right and from top to bottom of the menu
template.

When a simple pick menu is used in a SELECT menu statement, PROMULA clears the window opened to the Main
Screen, displays the menu, and highlights the first selection field. Selections may be made using the function keys (or the
numeric keys) directly. The F1 (numeric 1) key picks the first selection in the menu, the F2 (numeric 2) key picks the
second selection, and so forth. If you have more than ten selection fields, then press the Alt or Shift key together with one
of the ten Function keys to get up to twenty selections. For example, pressing Alt-F1 picks the 11th selection.

Popup menus give you the ability to define a network of menus that function as a unit. They also allow you to create menus
that use any printable key for selections, and to define context sensitive help for each selection field. A popup menu
definition consists of atop level menu definition and zero or more submenu definitions. Each menu definition consists of a
selection screen and a group of FIEL D statements. Each selection screen in a popup menu contains a number of selection
fields. Each selection field in the menu is text that is bracketed by two backslashes (). The selection fields are ordered from
1to nasyou go from left to right and from top to bottom of the menu template.

Each selection field in the selection screen of a popup menu requires a FIEL D statement. The FIELD statement contains
the following information:

adescriptor for the selection field,

akey code that allows the user to select the field with a single keystroke,

an optional reference to field-specific on-line help,

and an action code that is used to branch to alternate execution paths depending on the user's selection.

APoODNPE

When defined, a popup menu is associated with a pair of windows: The first window will display the selection screen(s);
the second window will display the field descriptions.

Pulldown menus are displayed in a dynamic system of windows that drop-down from a user-defined menu bar window.
The menu bar window, the values of the selection field labels, and the action codes returned by menu selections are all
defined by the parameters of the SELECT PULLDOWN statement when it is executed. The field labels and action codes
of the SELECT PULLDOWN statement may be variables or constants. Pulldown menu selections may only be made by
highlighting the desired selection field and pressing enter or by pointing and clicking with a mouse.

74

Promula Application Development System User's Manual

3.1.11.2 Data Menus

Data menus contain a number of fields to be displayed and/or edited by the user. Each field in the menu is denoted by a
series of contiguous at signs, @, or contiguous tilde characters (~). The number of field characters should be equal to the
desired number of characters in the data value that will be displayed in the field. The fields are ordered from left to right
and from top to bottom of the menu template. Fields defined with at signs will be editable and are referred to as data fields,
fields defined with tilde characters will not be editable and are referred to as display-only fields.

To execute a data menu, enter the following statement:
EDI T nmenu(vars)

where nmenu is the name of the data menu, and var s is alist of variables that correspond to the fields of the menu. The
variablesin the list must be arranged in the same order as the fields in the menu to which they correspond.

Upon execution, the data menu becomes a screen display that has the first data field highlighted by the bounce bar. Use the
movement keys to move the bounce bar to the desired data field. To edit the highlighted data field, press the Enter key and
enter the new value, as prompted at the bottom of the menu.

Examples:

The definition and use of menus are illustrated in the examples given with the DEFINE MENU, SELECT PULLDOWN,
and SELECT FIELD statements.

3.1.12 Numeric Precision
PROMULA stores REAL numbers with six significant digits and INTEGERs with ten significant digits.

REAL numeric expressions are evaluated in double precision to maintain at least six significant digits.
INTEGER and MONEY expressions are evaluated to ten significant digits of accuracy.

PROMULA allows mixed-mode arithmetic. A real variable is rounded to the nearest integer when equated to an integer
variable.

Onthe IBM PC, Redls less than ABS(8.43E-37) cause underflows in calculations. Real values greater than ABS(3.37E+38)
cause overflows. Integers are valid in the range (231 — 3, +231 + 3), about + 2.1 billion. Integers outside this range cause

overflows and cannot be processed by the system. Money type variable values are valid in the range (-231 — 3, +231 + 3),
about + 2.1 billion cents or 21 million dollars. Overflows and underflowsin calculations cause errors.

The value zero, of course, is valid, except in denominators of divisions where it does not make sense, or in logarithms. The
PROMULA system can be configured to allow these types of math errors; seethe SELECT MATHERROR statement.

Examples:

1. Given the following definitions:

DEFI NE VARI ABLE

A "A real value"

B "An integer val ue" TYPE=] NTEGER(8)
END
A=10. 6

theequation B = A roundsthe value of Ato yield the value

B =11

75

Promula Application Development System User's Manual

2. TheeguationB = I FI X(A) on the other hand, truncates the value of Ato yield

B = 10

3.1.13 Parameter
Definition:

A parameter is a numeric variable which is used locally within a procedure and is used to transfer data values to and from
the procedure.

Parameters are used to transfer data values to and from procedures.
Parameters may be scalars or multidimensional arrays, but they cannot be passed as string type variables.
A parameter identifier cannot be defined or referenced outside a procedure.

See DEFINE PARAMETER and DEFINE PROCEDURE for more details and examples.

3.1.14 Procedure

Definition:

A procedure isagroup of statements that are compiled as a unit under a unique identifier for later reference and execution.
Remarks:

A procedure definition or compilation is initiated with the DEFINE PROCEDURE statement and is terminated by the
END statement.

Procedure execution is initiated by entering the procedure identifier, optionally preceded by the word DO. When a
procedure is called, its statements are executed sequentially in the same order as they are defined.

Procedure execution ends after the last statement of the procedure is executed or when a BREAK procedur e statement is
executed. After ending, execution continues with the statement after the original procedure call that started the procedure.

3.1.15 Program

A PROMULA program is an ordered set of statements that allows you to transform input data to output information. A
statement is a complete instruction in a PROMULA program. Input data is given or known information which you "read
into" the program; output information is what the program computes and "writes out" for you.

A PROMULA program has two states: source and executable. When you first write it, the program is in its source state.
From its source state, the program is transformed to its executable state by the process of compilation. In its source state, a
program can be modified with a text editor and compiled but not executed. The computer can execute a program only if it
has been successfully compiled and isin an executable state.

The two main operations of the PROMULA system are program compilation and program execution. Both of these
operations can be performed either directly, with interactive input from the console (Options 10 and 6 of the Main Menu),
or indirectly, with batch input from disk (Options 5 and 8 of the Main Menu).

To write and/or edit PROMULA source programs, you can use your own text editor or PROMULA's Text Editor — Main
Menu option 4 .

76

Promula Application Development System User's Manual

3.1.16 Relation
Definition:
A relation is arule of correspondence between the elements of a set and the contents of a variable indexed (subscripted) by

that set.

A set is aclassification scheme and as such it is an abstraction. Its elements are usually ordered from 1 to n, where nis the
size of the set. However, if related to a variable of n values the elements of the set take on aless abstract meaning.

For example, the set nont h isan ordered set of the numbers 1, 2, ..., 12. The string variable m(nont h) contains 12 values
that are the month names January, February, ..., December. If the set nont h and the variable rm are related, then the
elements of the set nont h and the values of the variable m have the following correspondence:

Set nont h Variable m
1 January
2 February
12 December

PROMULA supports four kinds of relations:

ROW specifies the variable whose values will serve as the primary descriptor for a set's elements. The primary
descriptor values are used to label rows of values classified by the set in WRITE, BROWSE, and EDIT
statements. They are also used in bar plots, page headings, and displays of the set itself.

COLUMN gpecifies the variable whose values will serve as the column descriptor for a set's elements. The column
descriptor values are used to label columns of values classified by the set in WRITE, BROWSE, and
EDIT statements.

KEY specifies the variable whose values will serve as the codes for a set's elements. If no ROW relation for the
set is specified, the code values, also referred to as keys, are used as the primary descriptors for the set. If
no COLUMN relation for the set is specified, the code values are used as column descriptors. In addition,
set codes may function as set element identifiersin displays of the set and in coded set selections.

TIME specifies the variable whose values will serve as the time values for a set's elements. If no ROW relation for
the set is specified, the time values, also referred to as keys, are used as the primary descriptors for the set.
If no COLUMN relation for the set is specified, the time values are used as column descriptors. In addition,
time values may function as set element identifiersin displays of the set and in coded set selections. If a set
hasaTIME relation, it becomesaTime Series Set.

A related feature is PROMULA's TY PE=set option for variables. A variable of this type displays the row descriptor of the
set element which corresponds to its value. For example, if a variable, ns, has the type specification TYPE=nont h(15),
and ns contains the value 2, then the statement

VR TE (ns)

would display the word Febr uary with a width of 15 characters. Furthermore, if ns is assigned any value that is not
between 1 and 12, (the range of set nont h) it is given the value zero instead.

See DEFINE RELATION and SELECT RELATION for more details.

77

Promula Application Development System User's Manual

3.1.17 Segment
Definition:

The segment is a part of a program that may be saved on disk for later loading and execution.
Remarks:

A program segment is bounded by a DEFINE SEGMENT statement at its beginning and an END SEGMENT statement
at itsend.

A large program may be segmented into a hierarchical tree structure of segments.

For simple one-segment programs, the program segment should be initiated by a DEFINE PROGRAM statement and
ended with an END PROGRAM statement. The enclosed program segment is given the default name M AIN.

Chapter 4 describes program segmentation in detail.

3.1.18 Set
Definition:
A finite set of discrete elements that are ordered from 1 to N, where N is the size of the set.
Remarks:
A set has the following characteristics:
A unique identifier
A size
An optional descriptor
An optional format specification for displays of the set and arrays dimensioned by the set

An optional disk reference to descriptors of the set's elements

Sets are used primarily as subscripts of array variables and serve to build their multidimensional structure. They may also
be used to control program flow and to provide descriptive information for reports.

The descriptors associated with the elements of a set classify the values of variables subscripted by the set and serve as the
row, column, and page headings of such variables.

The default descriptors of the elements of a set are:
SET(1), SET(2),..., SET(N)
where SET isthe set identifier.
A set isdefined by the DEFINE SET statement.
The contents of a set may be displayed viathe WRITE set and BROWSE set statements.
The sets of aprogram may be listed viathe AUDIT SET and BROWSE SET statements.

The order and range of a set may be modified by the SELECT set, SELECT set |F, and SORT statements. The current
range and order of a set's elements are stored in a structure referred to as the set's selection vector.

78

Promula Application Development System User's Manual

The elements of a set may be selected interactively viathe SELECT SET, SELECT ENTRY, ASK...EL SE SET, and the

SELECT VARIABLE statements.

Sets may be used to drive DO loops with the DO set statement.

Descriptive information may be associated with set elements with the DEFINE RELATION, SELECT RELATION, and

READ set statements.

The descriptors of a set may be displayed as the values of a variable by using the TYPE=set type specification in the

variable's definition.

PROMULA has some special notation for use with sets that can be useful in working with sets and multidimensional

variables. This notation is discussed bel ow.

set:M

set:N

set:§[(i)]

set:R

set:V[(i)]

Normally, you will not assign values to these variables. However, if you want to make your own assignments, you will
have to use the PROMULA verb, COMPUTE. For example, it is possible to change the default range of a set to 1 through

A scalar containing the maximum size of set. Thisisthe value of N used in defining
the set.

A scalar containing the current size of set.

A vector containing the element sequence numbers of the selection vector of set.
The (i) subscript is optional and is used to indicate which element of the selection
vector is being referenced. The default isi = 1. Set: Sisuseful as an iteration counter
inaDO set loop or as a switch between alternate execution paths.

In addition, set:S(1) contains the sequence number of the element corresponding to
the minimum (maximum) value of a vector after a SORT (DESCENDING)
statement.

A scalar containing the current range of set. Initialy, set:R = set:M.

A vector containing the values associated with a TIME related set. This variable is
useful in dynamic simulation applications.

mwith the following statements:

COWPUTE set: R = m
SELECT set*

Y ou should not increase the size of a set above its definition size, as this can result in loss of program information.

To restore the range of a set to its default, use the statements

COWUTE set:R = set: M
SELECT set*

Examples:

1. Defining a Set

DEFI NE SET
nmont h(12) "Set of 12 Months"
acnt (3) "Account”

END

79

Promula Application Development System User's Manual

Using Sets as Subscripts to Define Array Variables

DEFI NE VARI ABLE
nd(nont h, acnt) "Data by Month and Account”
END VARI ABLE

Selecting Set Elements

SELECT nont h(1, 6,9-12)
SELECT nont h*

SELECT SET (nonth)
SELECT ENTRY (nont h)
SELECT VAR ABLE (nml)
SELECT nmonth IF nd GT 4

Specia Set Notation:

Some of the special notations for sets (set:M, set'R, set:N, set:S) areillustrated in the dialog bel ow.

DEFI NE SET
pnt (4)

END SET

DEFI NE VAR ABLE
X X"

END VARI ABLE

DO pnt
WRI TE (pnt)
END pnt
PNT(1)
PNT(2)
PNT(3)
PNT(4)

x=pnt: M
WRI TE x
X= 4

x=pnt: R
VWRI TE x
X= 4

x=pnt: N
VWRI TE x
X= 4

SELECT pnt (3, 2, 4)

X = pnt: S(3)

WRITE ("pnt:S(3) = "x)
pnt:S(3) = 4

DO pnt
x=pnt:S
WRI TE ("pnt:S
x=pnt: N
WRITE ("pnt: N = "x)

END

pnt:S = 3 Note that within a DO set loop, the size of the set

(set: N

pnt: N

pnt:S

pnt: N

1
x
<

1is one el enent.
2
1

80

Promula Application Development System User's Manual

pnt:S = 4
pnt:N = 1
x=pnt: N
WRI TE x

=3

5. Using setsdirectly from a database.

Sets may be defined as part of the structure of an array file (see DEFINE SET). These disk sets may be accessed
directly — without having the database definition in memory by using the file:set notation. For example, the following
code creates a database with three sets.

DEFI NE FI LE
af TYPE=ARRAY
END
OPEN af "test.dba" STATUS=NEW
DEFI NE SET af
rec(1000)
fl1d(8)
pag(10)
END SET af
The rest of the database definition (e.g., variables and relations).

CLEAR af

Thesetsinfilet est . dba can be manipulated by PROMULA by opening the array file— STATUS=0L D, then using
thefil e: set notation.

For example af : r ec istheidentifier of the 1000 element set in the array file t est. dba.

3.1.19 Statement

Definition:

A completeinstruction ina PROMULA program.

Remarks:

There are two types of statements. line and structured. Line statements are entered on a single line which may be continued
to additional lines according to the rules of line continuation. Structured statements, on the other hand, require more than
one line of code; they start in one line and end in another with a number of other lines in-between. A structured statement
may contain other line or structured statementsin it. All structured statements end with an END statement.

Examples:

The statement

WRI TE a

isaline statement.

81

Promula Application Development System User's Manual

The statement

DEFI NE VARI ABLE
a
b

END

is astructured statement.

All PROMULA statements begin with one of the verbs of the language, except for equations which begin with the optional
verb COM PUTE, procedure execution statements which begin with the optional verb DO, and datalines.

All definition statements are structured. They begin with the verb DEFINE and end with the verb END.

PROMULA statements have no line numbers and may begin anywhere on an input line.

Blanks or commas must be used to separate distinct statement parts.

A statement may be as long as you wish; however, if it islonger than 80 charactersit is good style to continue the statement
on the next input line by using a comma at the end of the current line. Y ou may use as many continuation lines as you wish.
3.1.20 System

Definition:

A system of n eguations and n unknowns.

A system has a name, n parameters (or unknowns), and n equations. The number of equationsin a system, n, can be aslarge
as you can fit in your working space.

The system is defined by the DEFINE SYSTEM statement.
Equations are written in the usual algebraic notation:

f(x1, x2,...) = g(x1, x2,...)
wheref and g are arbitrary real, continuous functionsof x1, x2,...

The solution of a system is obtained by an iterative process which you start by making an initial guess for all of the
unknowns.

A system sys with parameters x1, x2, ... may be solved by simply entering its name and specifying an ordered list of

scalar variablesal, a2,... corresponding to the parameter list. The number and order of variables in the variable list
must agree with the number and order of the parameters as defined in system sys:

sys(al, a2,...)
The solution of system sys, if it exists, will be returned as the values of the variablesal, a2, ...

If the attempt to solve system sys does not converge after a reasonable number of iterations, then you are given the
message to try another starting guess for the unknowns.

A diagnostic isalso given if the system does not have areal solution.

See also the DO L SOL VE statement which may be used to solve systems of linear equations.

82

Promula Application Development System User's Manual

Examples:

An example of system definition and system solution is given inthe DEFINE SYSTEM statement.

3.1.21 Table
Definition:
A tabular report (or display) of several variables.

A table has a body and an optional title and format. The body of the table contains the names of the variables whose values
will be displayed as the 'body’ of the table. The format specifies the width of the rows and columns of the table.

The values of the variablesin atable are classified by a common set. This common set classifies the columns of the table.
Y ou may include as many variables as you wish in the body of atable.

A table may be 'browsed' by using the BROWSE TABLE statement. This allows you to browse the pages of atable one at
atime.

A table may be 'written' by using the WRITE TABLE statement. This alows you to display or print the table in its
entirety.

A table may be 'edited’ by using the EDIT TABLE statement. This allows you to browse the pages of atable one at atime
and change its values.

Tables may also be defined using the DEFINE TABLE statement.

3.1.22 Time Parameters

Definition:

In PROMULA, the words TIME, DT, BEGINNING, and ENDING are reserved keywords that name four scalar
parameters that are used mainly in dynamic simulation applications. Such applications contain procedures involving time
series variables and time integration algorithms.

These four internal variables are used with the dynamic simulation subsystem of PROMULA where they are used explicitly
with the level and rate statements to specify approximate (first order) integrations of level variables over time:

level (TIME + DT) = level (TIME) + DT * rate(TIM)

Here, the value of avariable at time (TI ME + DT) isequa to its value at time TI ME plus the product of DT times the rate
of change of the variable at time TI ME.

In the dynamic simulation, these parameters have the following meanings:

TIME The TIME variable

DT A timeincrement for the TIME variable
BEGINNING The beginning value of TIME
ENDING The ending value of TIME

Some of the sample programs on the PROMULA Demo Disk are dynamic simulation models converted to PROMULA and
contain examples that use these parameters.

83

Promula Application Development System User's Manual

Seethe RATE, LEVEL, and TIME statements as well as the discussion of Dynamic procedur es in this Chapter for more
information on these constructs.

3.1.23 Variable
Definition:

A place for storing numeric or character information. A variable may have a single value or a number of values. A single-
valued variableis called ascalar. A variable with many valuesiscaled an array.

Remarks:
A variable has the following characteristics:

A unique identifier

A structure

A value or values

A format type

An optional descriptor

A storage type
The identifier of avariable is its symbolic name. It may have up to six alphabetic and numeric characters, the first being
alphabetic. No special characters are allowed. Any characters over six are ignored. Two variables may not share the same
identifier.

The structure of an array variable is defined by the sets or numeric constants classifying its dimensions. An array may
have up to ten dimensions or subscripts. A scalar variable has no internal structure, sinceit only has one value.

The values of a variable are the pieces of information it contains. The number of values in a scalar variable is one. The
number of valuesin an array variable is equal to the product of the sizes of the sets structuring it. These values are arranged
in rows, columns, and pages. The rows are classified by the first set of the variable; the columns are classified by the
second set; the pages by the third set, and so forth.

The Format Type of avariable isthe kind of information that it contains. PROMULA has eight format types:

REAL contains real numbers (numbers with decimal digits) in the ranges:
(-3.37E+38,-8.43E-37)
0
(+8.43E-37,+3.37E+38)

Reals outside these ranges are not valid and cause underflows or overflows in calculations,
which result in errors.

INTEGER contains integer numbers (whole numbers) in the range:

(-231-3,+231.3) about + 2.1 billion

Integers outside this range cause overflows and cannot be processed by the system.
STRING contains character values, i.e., strings of characters.

CODE contains codes. Codes are short character strings that are used for set selections. For
example, JAN and FEB may be used to select the months of January and February.

84

Promula Application Development System User's Manual

MONEY contains money values (dollars and cents). This type is useful for accounting arithmetic
where one-cent accuracy is important. Money variables maintain ten significant digits of
accuracy. Therange of MONEY type variablesis

(-2**31-3,+2**31-3) about £ 2.1 billion cents or 21 million dollars.

DATE contains date values. Dates are values of the form mm/dd/yy, where mm is a month
number, dd is a day number, and yy is a year number. Internaly, the date value is stored
as a numeric quantity equal to yymmdd. Alternative date formats (e.g., dd/mm/yy or
mm/dd/yyyy) are available by executing a SELECT DATE statement.

UPPERCASE contains string values that are automatically converted to uppercase when they are input
from the keyboard.
set contains integers from 0 to N. If the values of the set type variable are within the range of

set, the descriptors of set are displayed, otherwise, the variable is assigned and displays
the value 0. This type of variable is useful for helping the user enter or verify categorical
data.

Details and examples of using the various format types are presented with the discussion of the DEFINE VARIABLE
Statement.

The descriptor of avariableisastring of characters that will be used as a defaullt title when the variable is displayed by the
report generator.

Variable descriptors and identifiers can be displayed in write statements and in titles through use of the :1, :L, : D operators.
The notation variable:l can be used to indicate that the identifier of a variable isto be displayed.
The notation variable:L can be used to indicate that the descriptor of avariableisto be displayed.

The notation variable:D can be used to indicate that the identifier, followed by a colon, a space, and the descriptor for the
variableisto be displayed.

These operators may be used with indirects to display the identifier and/or descriptor of the variable that the indirect is
"pointing" at.

For example, given the following definition

DEFI NE VARI ABLE
pop "POPULATION SI ZE"
END VARI ABLE

the following relations are true

pop:L = POPULATI ON SI ZE
pop: D = POP: POPULATI ON SI ZE
pop: 1 = POP

The storage type of a variable determines where it resides, in RAM memory, or on disk, and whether or not its values can
be cleared from memory. Depending on where their values are stored, variables are of three types: fixed, scratch, and
disk. In addition, there are two pseudo-storage types. virtual and dynamic associated with disk access. Additional
information about the storage typesis presented in Chapter 4.

The DEFINE VARIABL E statement creates new variables and databases.

The READ statements put values into variables from afile or the keyboard.

85

Promula Application Development System User's Manual

The EDIT statements alow a program user to interactively modify variable values.

The WRITE, BROWSE, and PLOT statements display variables in tabular or graphical form.
Equations modify the values of variables.

Functions define relationships between pairs of variables.

Relations define relationships between sets and variables.

The DO IF, DO UNTIL, and DO WHILE statements use the values of variablesto control program flow.

The Statistical Functions generate statistical reports based on the values of selected variables.
Examples:

1. Defining fixed variablesin memory

DEFI NE VARI ABLE

A(row, col) "A 2-Di nensi onal Array"

B "A Scal ar"

C "A String Variable" TYPE=STRI N& 8)
D "A Date" TYPE=DATE(8)

M "A Money Vari abl e" TYPE=MONEY(10)

END VARI ABLE
2. Defining scratch variablesin memory
DEFI NE VARI ABLE SCRATCH
scr "A Scratch Vari abl e"
END VARI ABLE
3. Defining disk variables on afile
DEFI NE VARI ABLE file
dsk "A Disk Variabl e"
END VARI ABLE file
4. Defining virtual variablesin memory
DEFI NE VARI ABLE
dd "A fixed Disk Variable" DISK(file,dsk)
END VARI ABLE
5. Using variablesin equations

B
B

SUMr,c)(A(r,c))
PRODUCT(r,c)(A(r,c))

6. Putting valuesinto a variable with an equation
A=1
A=RANDOM 1000, 2000)
ACij)==i+(i-1)*() EQ 1)

7. Reading valuesinto avariable

DEFI NE SET

86

Promula Application Development System User's Manual

row(3)
col (2)
END

DEFI NE VARI ABLE

a(row,col) "A 2-Dinensional Array"
END VARI ABLE

8. Displaying avariable

WRI TE a
A 2-Di nensi onal Array

(1) Ca(2)

ROW(1) 1 2
ROW(2) 3 4
ROW(3) 5 6

WRI TE a::2(col,row) TITLE("D splay of "a:lL)
Di spl ay of A 2-Dinensional Array

RON 1) ROAN2) ROWS3)
coL(1) 1.00 3.00 5.00
coL(2) 2.00 4.00 6.00

9. Using disk variables directly off an array database — The file:variable notation

Suppose you have created an array database and you wish to access one of its variables. The name of the database is
array. dba and the name of the variable is sal es. The example below shows how to browse the variable sal es

directly.

DEFI NE FI LE
fl
END

OPEN f1 "array. dba"
BROWBE f 1: sal es

The syntax for such direct reference of disk variablesis: file:var, where file isthe array file containing the variable var
that you wish to access. Disk variables may also be accessed directly off an array database by using the COPY file,

IMAGE command.

3.1.24 Window -- Basic

PROMULA lets you split the screen into two sections. The upper section is called the Action window; it is used for
interactive displays such as data editing and selection menus and lists; the lower section is called the Comment window; it

isnormally used for providing comments about what is happening in the Action window.

The default length of the Action window is 25 lines; the default length of the Comment window is O lines. To set the length
of the Comment window, use a SELECT COMMENT=n statement, where n is the number of lines desired in the

Comment window.

87

Promula Application Development System User's Manual

Windows provide the means for writing tutorial programs. In such programs you show the execution of something in the
Action window and provide comments about it in the Comment window.

The statements of Basic Windowing are:

SELECT COMMENT=n dtarts windowing mode, sets the length of the Comment window to n
lines, where n is an integer in the range 1 to 22, and splits the screen by
drawing adividing line that is n spaces from the bottom.

SELECT COMMENT=0 gets you out of Basic windowing mode and closes the Comment
window.

WRITE COMMENT writes text in the Comment window without prompting for browsing.

BROWSE COMMENT writestext in the Comment window with prompting for browsing.

The displays of all other input/output statements are shown in the Action window.

The following procedure is an example of Basic Windows:

DEFI NE PROCEDURE wi ndow
SELECT COMVENT=12
WRI TE TEXT
This text was produced by the WRI TE TEXT statenent.
Note that it shows up in the Action Wndow (upper half of screen).
END
BROWSE COMVENT
The PROMULA code that produced the text in the above w ndow is:

VWRI TE TEXT

This text was produced by the WRI TE TEXT statenent.

Note that it shows up in the Action Wndow (upper half of screen).
END

END
WRI TE COMMVENT
This text was produced by the WRI TE COMMENT st at enent.
Note that it shows up in the Corment Wndow (|l ower half of screen).
END
BROWBE TEXT
The PROMULA code that produced the text in the wi ndow bel ow is:

VWRI TE COMVENT
This text was produced by the WRI TE COMMVENT st at ement .
Note that it shows up in the Corment Wndow (lower half of screen).
END
END
END PROCEDURE wi ndow

Upon execution of this procedure, the following display results:

88

Promula Application Development System User's Manual

This text was produced by the WRI TE TEXT statenent.
Note that it shows up in the Action Wndow (upper half of screen).

The PROVULA code that produced the text in the above windowis:

WRI TE TEXT

This text was produced by the WRI TE TEXT statenent.
Note that it shows up in the Action Wndow (upper half of screen).
END

After pressing any key, the following display results:

The PROMULA code that produced the text in the window belowis:

VRI TE COMVENT
This text was produced by the WRI TE COMMENT st at ement .

Note that it shows up in the Comment Wndow (lower half of screen).
END

Press any key to continue

This text was produced by the WRITE COMMENT st at enent .
Note that it shows up in the Conment Wndow (lower half of screen).

89

Promula Application Development System User's Manual

3.1.25 Window -- Advanced

The windowing capabilities discussed in the previous section are the most basic type of windowing available to
PROMULA users. For users who wish to create a truly professional-looking user interface for their applications, the
Advanced Windowing capabilities are available.

In PROMULA the custom design of the screen is specified using the DEFINE WINDOW and OPEN WINDOW
statements. The DEFINE WINDOW statement allows you to create windows. The OPEN WINDOW statement allows
you to assign one of your custom-designed windows to handle a specific set of display functions.

The OPEN WINDOW statement takes two parameters:

1. Thefunctional type of the screen to which you want to assign the window.
2. The name of awindow that you want to use for the screen of this functiona type.

These two parameters are discussed below.

The screen parameter of the OPEN WINDOW statement specifies the functional screen to be assigned a window.
PROMULA supports five types of functional screens; each oneis used for a particular set of operations. The five types of
screens. MAIN, PROMPT, COMMENT, ERROR, and HELP, are discussed below:

1. MAIN

The Main Screen is used for most of the input/output operations done by an application. These operations are
performed by the following statements:

ASK...ELSE BROWSE / WRITE TEXT
AUDIT /BROWSE / EDIT / WRITE variable BROWSE FILE

AUDIT /BROWSE / SELECT SET PLOT (in character mode)
AUDIT / BROWSE / SELECT VARIABLE SELECT ENTRY

AUDIT / BROWSE /WRITE / set SELECT indirect

AUDIT / COPY file Statistical Functions
BROWSE /EDIT / SELECT / WRITE menu table
BROWSE /EDIT /WRITE TABLE variable = GETDIR(filespec)
BROWSE / WRITE function WRITE text

The PROMULA Text Editor uses the colors of the Normal Text in the Main Screen.
2. PROMPT

The Prompt Screen is used for displaying the prompts produced by the following PROMULA statements.

ASK CONTINUE BROWSE /EDIT / SELECT menu
ASK...ELSE BROWSE function

BROWSE / SELECT VARIABLE BROWSE /EDIT TABLE
BROWSE / EDIT variable BROWSE TEXT

BROWSE / SELECT SET SELECT ENTRY

BROWSE set SELECT indirect

BROWSE FILE variable = GETDIR(filespec)

PROMULA's command mode prompt uses the Prompt Screen.

If a user-defined window is not opened to the Prompt Screen, PROMULA displays prompts at the bottom of the Main
Screen.

90

Promula Application Development System User's Manual

If awindow is opened as the Prompt Screen, it will automatically appear on the screen whenever PROMULA needs to
display prompts.

3. COMMENT

The Comment Screen is used for displaying the output of the WRITE COMMENT and BROWSE COMMENT
Statements.

If a user-defined window is not opened to the Comment Screen, PROMULA displays comments in the Main Screen.
4. ERROR

The Error Screen isused for displaying execution error messages.

If a user-defined window is not opened to the Error Screen, PROMULA displays an error message in the Main Screen.
5. HELP

The Help Screen is used to display on-line help. The Help Screen will contain the display produced by the BROW SE
DIALOG and BROWSE TOPIC statements.

In addition, on-line help in response to an Alt-H is displayed in the Help Screen.
If awindow is not opened to the Help Screen, PROMULA uses the Main Screen for displaying on-line help.

If awindow is opened as the Help Screen, it will automatically appear on the screen whenever PROMULA needs to
display the output of help statements.

The window parameter of the OPEN WINDOW statement specifies which user-defined window should be assigned to a
functional screen. A Window is a rectangular section of the screen. The name, location, appearance, and popup type of the
rectangle are specified by aDEFINE WINDOW statement.

The popup type of window determines what happens to information on the screen that is covered when the window is
opened. There are two popup types, Static and Popup.

When a static window is associated with a functional screen, it isimmediately displayed on the screen. Any text that gets
covered by the static window is lost and cannot be restored (unless it is written to the screen again). A static window,
including its borders and contents, will remain on the screen even after it is closed by a CLEAR WINDOW statement.
This feature makes static windows useful for creating a backdrop for your application or displaying instructions or
comments about a running program. A window will be static if it does not have the optional keyword POPUP in its
definition.

When a popup window is associated with a functional screen, it is not immediately displayed. A popup window is only
displayed while the functional screen associated with it isin use. The window is opened whenever a statement that uses the
associated functional screen is executed. After execution of such a statement, the window is removed from the display, and
any text that was covered by the window is automatically redrawn. Popup windows are useful for displaying on-line help or
other messages that will only be shown briefly. A window is of type Popup if it has the optional keyword POPUP in its
definition.

The DEFINE WINDOW statement is used to define the name, location, appearance, and popup type of a window.
The OPEN WINDOW statement is used to open a window on a specific functional screen.

The CLEAR WINDOW statement is used to end the association between a window and a functional screen.

91

Promula Application Development System User's Manual

Screen areas can also be assigned to serve as the display areas for popup and pulldown pick menus. This feature is
described in the context of the DEFINE MENU and SELECT PULLDOWN statements respectively.

Examples:

The code below is a simple example of Advanced Windowing .

DEFI NE W NDOW

cwi nd(1, 1,78, 4, WHI TE/ BLACK, FULL/ HEAVY / WHI TE/ BLACK)

mwi nd(10, 10, 69, 18, WHI TE/ BLACK, FULL/ SI NGLE/ WHI TE/ BLACK, BLACK/ WHI TE)

pwi nd(1, 23, 78, 23, WH TE/ BLACK, FULL/ HEAVY/ WHI TE/ BLACK, BLACK/ WHI TE) POPUP
END W NDOW

DEFI NE SET
row(4)
col (5)

END SET

DEFI NE VARI ABLE
A(row, col) "THE VALUES OF VARI ABLE A" TYPE=REAL(9, 2) VALUE=10
END VARI ABLE

DEFI NE PROCEDURE deno
OPEN cwi nd COWMENT
OPEN pwi nd PROMPT
OPEN mwi nd MAI N

VRI TE COVIVENT

Edit the values below according to the instructions in the pronpt
at the bottom of the screen, or press [End] to continue.

END

EDIT A

END PROCEDURE deno

Procedure deno produces the following screen.

92

Promula Application Development System User's Manual

Edit the val ues bel ow according to the instructions in the pronpt

at the bottomof the screen, or press [End] to continue.

THE VALUES OF VARIABLE A

Cca(1) CA(2) OCO(3) OO(4) (Y

RON 1) 10. 00 10. 00 10. 00 10. 00 10. 00
RON 2) 10. 00 10. 00 10. 00 10. 00 10. 00
ROW 3) 10. 00 10. 00 10. 00 10. 00 10. 00
RON 4) 10. 00 10. 00 10. 00 10. 00 10. 00

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Select Enter: Edit

3.2 Statement Format

In general, PROMULA is a free-form language. Its statements may start anywhere on the input line, and as many blanks or
commas as desired may be inserted between the various parts of the statement to improve readability.

PROMULA statements are not identified by line number; thus, PROMULA programs have no GO TO statements.

Comment lines may be inserted almost anywhere in the source code and are identified by having an asterisk in column 1. It
is possible to include in-line comments with some statements — for example after the procedure name in a DEFINE
PROCEDURE statement.

Full-line comments (i.e., those introduced by an asterisk in column 1) are not recognized as comments in two places. free
form text blocks like those used for the DEFINE M ENU and BROWSE/WRITE TEXT/COMMENT statements, and in
the data lines for the READ variable statement. The slash character (/) in column one may be used to insert comments into
the datalines for the READ variable statement

3.3 Commas and Blanks
Commas or blanks play an important role in the syntax of PROMULA statements. They are delimiters and are used to

separate the different parts of a statement. Multiple delimiters are treated as a single delimiter, except when they are part of
a character string.

3.4 LinelLength

93

Promula Application Development System User's Manual

An input line in PROMULA may contain up to 255 characters. Pressing the Enter key enters the line. Given the width of
most screens or printers, keeping each statement no longer than 80 characters will make your programs easier to read and
work with.

3.5 Line Continuation

If a statement is too long to fit on a single line, you may continue it on the next line. Continuation of a statement may be
indicated in one of three ways, depending on context:

1. If you are entering a character string, then continuation is automatic. The first character of the next line is concatenated
directly behind the last character of the preceding line, except that multiple trailing blanks are reduced to a single
blank.

2. If you are entering an equation, then continuation to the next line is indicated by the last non-blank character of the
current line, which must be acomma or an arithmetic, relational, or logical operator.

3. Inall other cases, continuation to the next line is indicated by entering a comma as the last non-blank character of the
current line.

3.6 Format of PROMULA Statement Descriptions

The following sections describe the statements of PROMULA. Each statement description consists of four parts:

1. The purpose of the statement

2. The general syntax of the statement

3. Remarks about the syntax and the statement

4. Examples demonstrating the syntax and use of the statement.

The notation for the syntax follows these rules:

1. Words in capital letters are PROMULA keywords and must be entered as shown. They may be entered in any
combination of uppercase and lowercase. PROMULA converts all words to uppercase (unless they are character
data or part of aquoted string).

2. You must supply any itemsin lowercase letters.

3. Iltemsin square brackets ([]) are optional.

4. Andlipsis(...) on aline by itself under an item indicates that you may repeat the item as many times as you wish,
on separate lines.

For example, the notation

DEFI NE SET
set(n) ["desc"]

END [conment]

describes the syntax of the DEFINE SET statement, and says the following:

94

Promula Application Development System User's Manual

1. Enter thewords DEFI NE SET to begin the definition.

2. Enter a set identifier, set, followed by a left parenthesis, (, followed by an integer, n, followed by a right
parenthesis,) , followed by an optional descriptor, desc. If you include a descriptor, it must be enclosed in quotes,

3. You may enter as many set definitions as you wish. Thisis denoted by the lipsis, ...

4. Enter the word END to end the set definitions. This may be followed by a comment, if you wish.

An €lipsis (...) in aline after an item indicates that you may repeat the item as many times as you wish, on that line or on
lines with the appropriate continuation character.

For example, the notation
PLOT (varl[,var2,...])
indicates that you may include one or more var specificationsin the argument of the PLOT statement.

The meanings of the lowercase items that you must enter to form a statement are described in the Remarks of each
statement description.

3.7 The PROMULA Statements

3.7.1 ASK CONTINUE
Purpose:

I nterrupts execution and issues the message

Press any key to continue?

Syntax:
ASK CONTI NUE

Remarks:

You may insert this statement anywhere inside a procedure to stop execution and give the user of the procedure the option
to continue execution or exit to the Main Menu. If the user presses the Esc key he is returned to the main menu; any other
key (or clicking the mouse button) resultsin continued execution.

This statement is a simple pause and is a useful feature for conversational applications or debugging.

To execute a pause without issuing the prompt, use aWRITE CLEAR(-1) statement.

3.7.2 ASK...ELSE

Asksthe user something and executes a group of statements depending on the response.

Syntax:
ASK "pronpt", response
st at enent
...[ELSE [response]
st at enent

95

Promula Application Development System User's Manual

END

Remarks:
pr onpt isamessage or prompt for the user.
response isapossible user response to pr onpt . Possible responses are of three types:
[WORD =] code
SET =set
VARIABLE =indir[(vars)]
where
code is a string of characters which must be entered in upper or lower case to qualify as a valid
response. PROMULA recognizes only the first six characters of code as a valid response;
therest are ignored.
set isaset identifier and allows the user to make set selections (see Example 2 below).
indir is the identifier of an indirect variable which acts as a pointer to other variables and allows
the user to select a variable for subsequent input/output operations. Y ou must put an asterisk
(*) after the identifier of i ndi r inits definition to tell PROMULA that it will be used as an
indirect variable. Calculations with indirect variables are not allowed. (See Example 3
below).
vars is a list of variables from which the user is expected to make a selection. The selected
variableistransferred to i ndi r for the input/output purposes of the ASK statement only. If
this list is omitted, all variables in the program are included in the list. (See Example 3
below).
st at enment isany executable statement (i.e., no definitions), including other ASK statements.

The ASK statement behaves like the DO | F statement, i.e., it provides an alternative path of execution if a condition is met.
The conditions of an ASK statement are satisfied if a user response matches one of the allowed responses specified either
by the ASK statement or by one of the EL SE statements included in the ASK.

A user response is checked against the responses of the ASK statement sequentially from top to bottom. When a match
occurs, program execution proceeds to the statements following the matched response until the next ELSE or END
statement, whichever comes first.

The SET=set option allows the user to make set selections. Appropriate user responses are set sequence numbers, set
codes, or scalar variables with values in the set range. The SELECT SET, SELECT ENTRY, and SELECT VARIABLE
statements provide alternative means of helping the user make a set selection.

The VARIABLE=indir option allows the user to select a program variable for input/output purposes by entering the
variable identifier. The SELECT variable statement and the INDIRECT function are also useful tools for helping the user
select a variable and working with interactive variable selections.

A null ELSE statement, i.e., one with a blank response, is executed only if all the other preceding EL SE statements fail.
For this reason, the null EL SE statement is usually the last one.

NOTE: The ASK statement is not case sensitive.

96

Promula Application Development System User's Manual

ASK statements may be nested to any depth.
ASK statements are allowed only inside procedures.

Examples:
1. Thefollowing isa procedure containing asimple ASK statement.

DEFI NE PROCEDURE yesno
ASK "Do you wish to continue? (yes/no)", yes
WRI TE(" Cont i nue")
yesno
ELSE no
VRl TE(" St op")
END ask
END PROCEDURE yesno

The purpose of the procedure is to issue the question " Do you wi sh to continue? (yes/no)" and take one of
two execution paths depending on user response. A sample dialog with procedure yesno is displayed below.

yesno
Do you wish to continue? (yes/no) Aninvalid response causesthe
XXX guestion to be asked again.

Do you wi sh to continue? (yes/no)

yes

Cont i nue

Do you wi sh to continue? (yes/no)

no

St op

The yes path writes the message Cont i nue and issues the prompt Do you wi sh to conti nue?, thanks to the
recursive nature of PROMULA procedures. The no path issues the message St op and exits the ASK statement. Any
other user response causes the prompt Do you wi sh to continue? to be issued again. Exit from this ASK
statement is only possibleif you respond no.

2. The example below shows how to use the SET=set option in order to make alternative set selections. The procedure
sel mon alows you to make various selections from the elements of the set nont h by entering set codes, variable
identifiers, or set element sequence numbers. The definitions and initializations of the example variables are shown
below.

DEFI NE SET
nont h(12)
END SET

DEFI NE VARI ABLE
mv/(nonth) "“Month Val ue"

nc(nonth) "Month Code" TYPE=CODE(5)
m(nonth) "Month Nane" TYPE=STRI NG(12)
X "x Val ue"

y "y Val ue"

indir* "An Indirect Variable"

END VARI ABLE

DEFI NE RELATI ON
KEY(mont h, nt)

ROW nont h, m)

97

Promula Application Development System User's Manual

END RELATI ON

DEFI NE PROCEDURE sel non
ASK "Sel ect nonths or LIST or END' END
ELSE LI ST
WRI TE nont h
sel non
ELSE SET=nont h
WRI TE(" The sel ected nonths are")
WRI TE nv
END ask
END PROCEDURE sel non

READ nmv
123456789 10 11 12

READ nt
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

READ
January
February
Mar ch
April
May
June
July
August
Sept enber
Cct ober
Novenber
Decenber

Given the definitions and initializations above, we can execute procedure sel non to demonstrate the behavior of the
ASK statement for making set selections. A sample dialog with procedure sel non is shown below.

sel mon
Sel ect nonths or LI ST or END
? LIST
Mermber Description
JAN January
FEB February
MAR Mar ch
APR April
MAY May
JUN June
JUL July
AUG August
SEP Sept enber
CCT Cct ober
NOV Novenber
DEC Decenber
Sel ect nonths or LI ST or END
? may, dec
The sel ected nonths are
Mont h Val ue
(1)
May 5
Decenber 12

sel non
Sel ect nonths or LI ST or END

98

Promula Application Development System User's Manual

? 6-9
The sel ected nonths are
Mont h Val ue
(1)
June 6
July 7
August 8
Sept enber 9
x =5
y =7
sel mon
Sel ect nonths or LI ST or END
? X,y
The sel ected nonths are
Mont h Val ue
(1)
May 5
July 7

3. Thisexample shows how to use the VARIABL E=indir option in order to select a program variable. Here, i ndi r isan
indirect variable that serves as a substitute for other selected variables.

DEFI NE PROCEDURE sel var
ASK "Sel ect variable or LIST or END', END
ELSE LI ST
AUDI T VARI ABLE
sel var
ELSE VARI ABLE=i ndi r
WRI TE indir
sel var
END ask
END PROCEDURE sel var

The procedure sel var alows you to select one of the variables of a program by entering the variable's identifier in
response to an ASK statement. A sample dialog with procedure sel var is shown below.

DO sel var
Sel ect variable or LIST or END
? LIST
Identifier Description
VY2 Mont h Val ue
MC Mont h Code
MN Mont h Nane
X X Val ue
Y Y Val ue
I NDI R An Indirect Variable
Sel ect variable or LIST or END
? nv
Mont h Val ue
(1)
January 1
February 2
Mar ch 3
April 4
May 5

99

Promula Application Development System User's Manual

June 6
July 7
August 8
Sept enber 9
Cct ober 10
Novenber 11
Decenber 12
Sel ect variable or LIST or END
? X
x Val ue 5
Sel ect variable or LIST or END
? end
3.7.3 AUDIT file
Purpose:
Produces alisting of the sets and variablesin an array file.
Syntax:
AUDIT file
Remarks:
file istheidentifier of the array file you wish to audit.
Examples:
The following code illustrates the AUDIT file statement:
DEFI NE FI LE
arrl TYPEEARRAY "A Prinary Array Data File"
END FI LE
OPEN arrl1 "arrl.dba", STATUS=NEW
DEFI NE SET arrl
yrs(10) "Year"
pag(03) " Pages"
sic(5b) "SI C Codes"
END SET arrl
DEFI NE VARI ABLE arr1
DUR(yrs) TYPE=REAL(8,0) "Manufacturing Durabl es Enpl oynent"

EMP(pag, yrs) TYPE=REAL(8,0) "Enploynent by |ndustry”
EMPT(yrs) TYPE=REAL(8,0) "Total Enploynent"

WSEMP(yr S) TYPE=REAL(8,0) "Total Wage and Sal ary Enpl oynment"
SI CST(si ¢) TYPE=STRI NG 30) "Nanes for Industrial Categories"

YEAR(yr s) TYPE=STRI N 5) "Years"
END VARI ABLE arr1l

The statement AUDI T ar r 1 produces the listing below.

Identifier Description

YRS Year
PAG Pages
SIC SI C Codes

100

Promula Application Development System User's Manual

DUR Manuf act uri ng Dur abl es Enpl oynent
EMP Enpl oyment by I ndustry

EMPT Tot al Enpl oynent

WSEMP Total Wage and Sal ary Enpl oynment
SI CST Nanes for Industrial Categories
YEAR Year s

3.7.4 AUDIT SET

Purpose:
Produces afull or partial listing of the setsin a program.

Syntax:

AUDI T SET[(sets)]
Remarks:
sets isalist of setidentifiers. If omitted, all program sets are listed.

The AUDIT SET statement lists the identifiers and descriptors of the program sets. If set s isomitted, the setsare listed in
the order in which they were defined; otherwise, they are listed in the order specified by set s.

Examples:

The dialog below demonstratesthe AUDIT SET statement.

DEFI NE SET
nmont h(12) "12 Mont hs"
row(3) "3 Rows"
col (10) "10 Col ums"
END SET
AUDI T SET
Identifier Descri pt or
nont h 12 Mont hs
row 3 Rows
col 10 Col umms

3.7.5 AUDIT VARIABLE

Purpose:
Produces afull or partial listing of the variablesin a program.

Syntax:

AUDI T VARI ABLE[(vars)]
Remarks:

vars isalist of variable identifiers. If omitted, all program variables are listed.

101

Promula Application Development System User's Manual

The AUDIT VARIABLE statement lists the identifiers and descriptors of the program variables. If var s is omitted the
variables are listed in the order in which they were defined; otherwise, the sets are listed in the order specified by var s.

Examples:

The dialog below demonstrates the AUDIT VARIABLE statement.

DEFI NE VARI ABLE
x "The x-val ues"
y "The y-val ues”
END VARI ABLE

AUDI T VARI ABLE

Identifier Descri pt or
X The x-val ues
y The y-val ues

3.7.6 BREAK procedure

Purpose:
Escapes from the current procedure.

Syntax:

BREAK proc
Remarks:
pr oc isthe name of the procedure that contains the BREAK procedur e statement.

Upon execution, the BREAK procedur e statement escapes from the current procedure and returns control to the program
unit which called the procedure. After returning, execution continues with the statement after the procedure call that
originally executed pr oc.

Examples:

The following example illustrates use of the BREAK statement to escape fromaDO UNTIL loop.

DEFI NE VARI ABLE
X "x ="
END VARI ABLE

DEFI NE PROCEDURE pr oc
DO UNTIL x GT 10
X =x+1
WRI TE x
DOIF x GI 5
WRI TE "Leavi ng proc"
BREAK proc
END | F
END UNTI L
END PROCEDURE pr oc

DEFI NE PROCEDURE cal |
DO proc
WRI TE "Back from proc”

102

Promula Application Development System User's Manual

END PROCEDURE cal |

Executing procedure cal | generates the output shown below.

8

X X X X X X
[T I T I I TR |
SOUhWN R

Leavi ng proc
Back from proc

3.7.7 BROWSE COMMENT
Purpose:

Displays text for browsing in the "Comment" window (Basic Windows) or the active Comment Screen (Advanced
Windows).

Syntax:

BROWSE COMVENT
t ext

ENiD. .

Remarks:

text isany text that you enter. The text will be clipped to the width of the window opened to the Main or Comment
Screen or the Comment Window. No more than 255 lines (approximately 40 pages) of text may be stored in a
single BROWSE COMMENT statement.

The keyword END must be entered starting in column 1 and must be capitalized.

The text will be shown by page in the Comment Screen of the display. A prompt at the bottom of the Prompt Screen will
describe how to browse the text.

For more details, see the sections on Basic Windows and Advanced Windows.
See d'so the BROW SE menu statement.

3.7.8 BROWSE DIALOG

Purpose:

Displays adialog menu for browsing the topics of adialog file.

Syntax:

BROASE DI ALCG fi | espec

Remarks:

103

Promula Application Development System User's Manual

fil espec isaquoted string or string variable containing the name of the physical disk file where the dialog file that you
want to browse is stored. This name is formatted according to the file naming conventions for your operating
system.

Upon execution, the BROWSE DIALOG statement displays a menu whose selection fields are the titles of the topics
contained in the dialog file. From this menu, you may browse any of the topics. The display will be shown in the window
opened to the Help Screen if oneis active.

Examples:

The use of this statement is demonstrated in the context of the example given in the DEFINE DIALOG statement.

3.7.9 BROWSE FILE

Purpose:
Displays atext file for browsing.

Syntax:
BROWSE FI LE fil enanme
Remarks:

filename isaquoted string or string variable containing the name of the text file to be displayed for browsing. This
nameis any valid file specification and is used to identify the file to the operating system.

Upon execution, PROMULA clears the Main Screen and displays the specified text file for browsing. A prompt in the
Prompt Screen will tell the user how to browse the file.

NOTE: OnthelBM PC, the size of the files you can browse is limited to 32K or less. To browse larger files you may
invoke the PROMULA Text Editor or use the RUN DOS command to invoke your own file viewing system.
Seethe RUN EDITOR and RUN DOS statements.

The display will be clipped to the width of the window opened to the Main screen.
Examples:
1. The statement
BROASE FI LE "deno. prnt
will display the file deno. pr mfor browsing.

2. Similarly, the following statements

DEFI NE VARI ABLE
fname TYPE=STRI N& 12) "File Nane"
END
f nane="deno. prnt
BROWEE FI LE f nane

will display the file deno. pr mfor browsing. Here, f nanme is a string variable containing the string deno. pr m

3.7.10 BROWSE function

104

Promula Application Development System User's Manual

Purpose:

Displays the values of afunction in tabular form for browsing.

Syntax:
BROABE func[fmt] [TITLE(text)]

Remarks:
func istheidentifier of afunction defined by the DEFINE FUNCTION or DEFINE LOOK UP statement.

fnt is a format specification of the form \ p: w: d to indicate the position of the display, the width of the values
displayed, and the number of decimalsin real values, where

p is an integer indicating the width in characters of the row descriptors for the display.

w is an integer indicating the width of the columns of values. A negative width parameter left justifies the
valuesin each column.

d is an integer indicating the number of decimal places to be displayed for each value. If d is an "E", the
values will be displayed in exponentia notation.

For functions defined by the DEFINE L OOK UP statement, the default format is p=10, w=8 and d=2.

For functions defined by the DEFINE FUNCTION statement, wand d have the values specified in the DEFINE
VARIABLE statement for the function variables, and p is the width specified in the definition of the row
descriptors of the set subscripting the function.

text isatitlefor thedisplay and can contain text, variables, and other formatting characters as described in the WRITE
text statement.

Upon execution, the BROWSE function statement clears the Main Screen and displays the values of the function in
tabular form for browsing. A prompt in the Prompt Screen will tell the user how to browse the function.

Examples:

The BROWSE function statement isillustrated below:

DEFI NE SET
pnt (60)
END SET

DEFI NE VARI ABLE
x(pnt) "The X val ues"
y(pnt) "The Y val ues"
p(pnt) "PNT Nanes" TYPE=STRI N& 10)
END VARI ABLE
x(i) =i
y(i) i **2
p(i) " PNT# " +i
SELECT ROW pnt, p)

DEFI NE FUNCTI ON

fx(x,y)
END FUNCTI ON

Given the definitions above, the statement

105

Promula Application Development System User's Manual

BROWSE f x: 10: 4,
TETLE(" Y=F (X) SX*% 2" [" e e e e e ")

would clear the Main Screen and produce atabular display of function f x for browsing as shown below.

=f (X) =x**2

(1) (2)
PNT# 1 1.00 1. 00
PNT# 2 2.00 4.00
PNT# 3 3.00 9.00
PNT# 4 4.00 16. 00
PNT# 5 5.00 25.00
PNT# 6 6.00 36.00
PNT# 7 7.00 49.00
PNT# 8 8.00 64. 00
PNT# 9 9.00 81.00
PNT# 10 10. 00 100. 00
PNT# 11 11. 00 121. 00
PNT# 12 12. 00 144. 00
PNT# 13 13. 00 169. 00
PNT# 14 14. 00 196. 00
PNT# 15 15. 00 225.00
PNT# 16 16. 00 256. 00
PNT# 17 17. 00 289. 00
PNT# 18 18. 00 324.00
PNT# 19 19. 00 361.00

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Browse

3.7.11 BROWSE menu

Purpose:

Displays a "data’ menu including the values of its data fields. This statement is useful for displaying a screen of text and
data

Syntax:
BROWSE nenu(vars)
Remarks:

menu isthe identifier of a data menu. A data menu is a screen template which is designed to help its user to edit and
display data. The fields in a data menu are previously defined in aDEFINE M ENU statement.

vars isalist of variable identifiers that contain the values of the data fields to be displayed. The variables in the list
must be in the same order as the data fields in the menu (from left to right and top to bottom) to which they
correspond.

Data menus contain a number of data fields to be displayed by the user. In the DEFINE M ENU statement, each data field
is denoted by a series of contiguous "at signs', @, or "tilde signs’, ~, equal in number to the desired number of digitsin the
datafield. The data fields are ordered from left to right and from top to bottom of the menu template.

106

Promula Application Development System User's Manual

Upon execution, the data menu is displayed in the Main Screen. The values of the variables are displayed in the places
marked by @ or ~ characters. Execution pauses, and the user is alowed to view, but not modify, the values in the menu.
When the user is ready to continue, he/she presses a key or clicks the mouse button.

The use of the BROW SE menu statement is especially helpful if you want to show a data menu in read-only mode.

3.7.12 BROWSE SET
Purpose:

Produces afull or partia listing of the setsin a program for browsing.
Syntax:

BROWSE SET[(sets)]
Remarks:

sets isalist of setidentifiers. If set s isomitted, al the program sets are listed in the order in which they were defined;
otherwise, selected sets are listed in the order specified by set s.

Upon execution, PROMULA clears the Main Screen and lists the identifiers (codes) and descriptors of the specified sets. A
prompt appears in the Prompt Screen describing how to browse the list.

Examples:

Given the folowing definitions

DEFI NE SET
nont h(12) "12 Mont hs"
r ow(04) "04 Mont hs"
col (10) "10 col ums"
END

the statement

BROWSE SET

produces the display below for browsing.

107

Promula Application Development System User's Manual

I dent Description
MONTH 12 Mbnths
ROW 04 Rows
CaL 10 Col umms

Press any key to continue

3.7.13 BROWSE set

Purpose:
Shows the selection keys, descriptors, order, and range of the currently active elements of a set.

Syntax:

BROWGE set
Remarks:
set isthe identifier of the set being shown.
Upon execution, the BROW SE set statement clears the Main Screen and lists the elements of set for browsing.

Examples:

DEFI NE SET
nont h(12)
END SET
DEFI NE VARI ABLE
m(nonth) "Month Nane" TYPE=STRI NG(12)
END VARI ABLE
READ mm: 4
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
SELECT ROW nont h, mm)

Given the definitions and relations above, the statement BROWSE nont h, produced the display below.

3.7.14 BROWSE TABLE
Purpose:

Displays atable of several variables on the screen to let you browse their values by page.

108

Promula Application Development System User's Manual

Syntax:
BROASE TABLE(sets) [, TITLE(title)] [, FORVAT(rw, cw)]
BODY(["text1",] varl[fntl] [,"text2",] var2[fm2],...)
Remarks:
sets isalist of the identifiers of the sets classifying columns and pages of the variables in the table. The first set
will classify the columns of the table; the other sets, if any, will classify the pages of the table. Sets
dimensioning table variables which are missing from the list will classify the rows of the table. The set s list
sets must contain at least one set (or the number 1 for browsing a group of scalar variables) and must be
missing those set identifiers which will classify the rows of the multidimensional table variables.
title istext you wish to show as atitle for the table.
textl isany text that you wish to use as a subtitle for the values of var 1. Thistext may not contain variables.
var 1l isthe identifier of the first variable in the table.
frtl isthe desired format for the values of var 1.
text 2 isany text that you wish to use as a subtitle for the values of var 2. Thistext may not contain variables.
var 2 isthe identifier of the second variable in the table.
fnt2 isthe desired format for the values of var 2.
rw isthe width in characters of row descriptors.
cw isthe width in characters of table columns.

Upon execution, the BROWSE TABLE statement clears the Main Screen, displays the first page of the table, and issues
the following prompt at the bottom of the Prompt Screen:

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

The highlighted portions of the message represent the following keypress options:

Fn

Shift-Fn

Browsing
keys

Home

End

Examples:

press the Fn function key to browse up the nth dimension of the array, where n varies
from 1 to 10. The F1 key browses up the 1st dimension, the F2 key browses up the 2nd
dimension, and so forth.

press simultaneously the Shift and Fn keys to browse down the nth dimension of the
array. The Shift-F1 key browses down the 1st dimension, the Shift-F2 key browses
down the 2nd dimension, etc.

The four movement arrows at the right-hand section of the keyboard allow you to move
the cursor to the desired value. The PgUp and PgDn keys are used to move up and
down the pages of the display.

moves the cursor to the "top" of the display, which is the first value on the screen.

press the End key to exit editing mode or to exit browsing mode.

109

Promula Application Development System User's Manual

The following program demonstrates the BROWSE TABL E statement:

DEFI NE SET
row(5)
col (10)

END SET

DEFI NE VARI ABLE
a(row,col) "A Data Set"
b(row,col) "B data set"
tot(col) "The Total of A and B"
END VARI ABLE

DEFI NE PROCEDURE br st ab
SELECT W DTH=70
BROWSE TABLE(col),

TITLE("The Table Title"),

FORMAT(20, 10),

BODY(tot:0:1/"The A Values"/,a:0:2,/"The B Val ues"/,b)
END PROCEDURE br st ab
a=1
b =2
tot(c) = SUMr)(a(r,c) + b(r,c))

Executing procedure br st ab produces the display below.

The Table Title

CoL(1) COoL(2) CoL(3) COL(4) COL(5)
The Total of A and B 15.0 15.0 15.0 15.0 15.0
The A Val ues
RON(1) 1.00 1.00 1.00 1.00 1.00
RON(2) 1.00 1.00 1.00 1.00 1.00
ROWN(3) 1.00 1.00 1.00 1.00 1.00
RON(4) 1.00 1.00 1.00 1.00 1.00
RO 5) 1.00 1.00 1.00 1.00 1.00
The B Val ues
RON(1) 2 2 2 2 2
ROA(2) 2 2 2 2 2
RON(3) 2 2 2 2 2
RON(4) 2 2 2 2 2
RON(5) 2 2 2 2 2

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

Pressing the F2 key, "browses up" the column or second dimension, as shown in the screen below:;

110

Promula Application Development System User's Manual

The Table Title

COL(6) COL(7) COL(8) COL(9) COL(10)
The Total of A and B 15.0 15.0 15.0 15.0 15.0
The A Val ues
ROW 1) 1.00 1.00 1.00 1.00 1.00
ROW(2) 1.00 1.00 1.00 1.00 1.00
ROW 3) 1.00 1.00 1.00 1.00 1.00
ROW 4) 1.00 1.00 1.00 1.00 1.00
ROW(5) 1.00 1.00 1.00 1.00 1.00
The B Val ues
ROW 1) 2 2 2 2 2
ROW 2) 2 2 2 2 2
ROW 3) 2 2 2 2 2
ROW 4) 2 2 2 2 2
ROW(5) 2 2 2 2 2

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Browse

Note that this page shows columns six through ten of the table. Note also that the primary descriptors of set r ow are used as
the row descriptors of the table. This is because set r ow was deliberately omitted from the set s specification in the
BROWSE TABLE statement for this example.

See also the DEFINE TABLE, EDIT TABLE, and WRITE TABLE statements.

3.7.15 BROWSE TEXT
Purpose:

Displaystext for browsing in the Action Window (Basic Windows) or the Main Screen (Advanced Windows).

Syntax:

BRONGE TEXT
t ext

ENiD. .
Remarks:
text isany text that you enter.
The keyword END must be entered starting in column 1 and must be capitalized.
Upon execution, the text will be shown by page in the Action Window or the current Main Screen of the display. A prompt
at the bottom of the Prompt Screen will let you browse the text. The text will be clipped to the width of the window opened

to the Main Screen or the Action Window. No more than 255 lines (approximately 40 pages) of text may be stored in a
single BROWSE TEXT statement.

111

Promula Application Development System User's Manual

For more details, see the discussion of the PROMULA noun Window.
3.7.16 BROWSE TOPIC
Purpose:
Browse a specific topic from a dialog file.
Syntax:
BROASE TOPIC fil espec n
Remarks:
fil espec isaquoted string or string variable containing the name of the physical disk file where the dialog file that you
desire to browse is stored. This name is formatted according to the file naming conventions for your operating

system.

n is the dialog topic sequence number, as defined by its place in the dialog file, of the specific topic you wish to
browse.

Upon execution, the BROWSE TOPIC statement displays the specified topic for browsing.
Examples:

The use of this statement is demonstrated in the context of the example given in the DEFINE DIALOG statement.

3.7.17 BROWSE VARIABLE
Purpose:

Produces afull or partia listing of the variablesin a given program for browsing.
Syntax:

BROASE VARI ABLE [(vars)]
Remarks:

vars isalist of variable identifiers. If var s is omitted, the variables are listed in the order in which they were defined;
otherwise, the sets are listed in the order specified by var s.

The BROWSE VARIABLE statement differs from the AUDIT VARIABLE statement in that it lets you interactively
browse a"long" list of variables while the audit does not.

Examples:

Given the definitions bel ow:

DEFI NE VARI ABLE
a "The A Val ue"
b "The B Val ue"
c "The C Val ue"
END VARI ABLE

the statement BROW SE VARIABL E produces the following display.

112

Promula Application Development System User's Manual

| dent Description

A The A Val ue
B The B Val ue
C The C Val ue

Press any key to continue

3.7.18 BROWSE variable

Purpose:

Displays a multidimensional variable on the screen and lets you browse its values by page.

Syntax:

BROWSE var[fnt][[ORDER] (sets)][TI TLE(title)][D SPLAY(dvar)][opti on][TRANSPOSE]

Remarks:

var

fmt

isthe identifier of the variable you wish to browse.

is a format specification indicating the width of row descriptors, the width of the columns displayed, and the
number of decimalsin real values, as follows:

\p:wd
where

p is an integer specifying the width in characters for row descriptors. The default width is the width
specifications of the row descriptors related to the set subscripting the rows of the display.

w is an integer specifying the width in characters for each column of values. The default is the width
specification in the definition of var. A negative width parameter left justifies the values of var in each
column.

113

Promula Application Development System User's Manual

sets

title

dvar

option

d is an integer specifying the number of decimals to display for real numeric values. The default is the
decimal specification (if applicable) in the definition of var. If d is an "E", the values of var will be
displayed in exponential notation (base-10), and will show seven digits and six decimal places.

If omitted, w and d are the parameters specified in the TYPE specification for var, and p is the width
specifications of the row descriptors related to the set sub-scripting the rows of the display.

isalist of the sets classifying the values of var . The order in which the sets are listed specifies the structure of
the display: the first set classifies the rows of the display, the second set classifies the columns, and the third to
last set classify the pages of the display. The keyword ORDER is optional. If it is omitted, set s specification
must follow immediately after the optional format specification.

is any text you wish to show as atitle for the table. The title may include variables, and other format characters
according to the rules defined in the WRI TE variables statement.

is avariable used to control the display of variable var . dvar should be subscripted by the set that defines the
rows of the display. PROMULA will display values of var only for those rows corresponding to elements of
dvar that contain nonzero values. See Example 4 below.

is one of the following mutually exclusive BROW SE variable options:

TOTAL|[(sets)] displays totals over the selected sets for browsing along with values of var. If sets is
omitted, all the marginal and grand totals for var will be displayed.

PERCENT (set) displaysthe percent distribution of the total over set of var .

CHANGE(n) The CHANGE option allows the user to show atable of percent change in time series data
for a previously defined time series variable. A time series variable is one which is
subscripted by atime series set.

The percent change for timet is computed from values for timet andt- 1, wheret andt -

1 are two consecutive selections of the time set. The selections depend on the current local
setting of the set. They may or may not be consecutive time points. There may be more than
one time unit between them.

Following the keyword, CHANGE, a real number within parentheses is required. It
represents the number of time units to be used in computing percent change. Internally it is
divided by the difference in time values for selectionst andt - 1.

Suppose values for 1970 and 1975 are used in computing the percent change. That is, the
user has selected these years for computation and output generation. Also, he wants to
compute an annual percent change, so one time unit (a year) is designated on the CHANGE
option (CHANGE(1)) . The change for 1975 is computed as the difference in values for
1970 and 1975, divided by the 1970 value, and multiplied by 1/5 (for annual change). A
factor of 100 gives the percent change from 1970 to 1975 in one year increments.

In the tabular display the words, Percent Change in, are placed in front of the original
descriptor (from the variable definition). If the TITLE option is used with the CHANGE
option, no words are prefixed.

GROWTH(n) The GROWTH option allows the user to show atable of growth ratesin time series data for
a previously defined time series variable. n is an integer constant that specifies the number
of time units with which each change is associated. A time series dataset or array is one
which is subscripted by a time series set. The growth rate for time t is computed from
valuesfortimet andt - 1.

114

Promula Application Development System User's Manual

MOVING(n)

Following the keyword, GROWTH, a real number within parentheses is required and
stands for the number of time units between each pair of values for which growth rate will
be computed. Internally, it is divided by the difference in time values for selectedt and t -
1.

Suppose the user has selected 1970 and 1975 and wishes to show annual growth rates
(GROWMH(1)). The growth rate for 1975 is computed as a quotient — value for 1975
divided by value for 1970 — raised to the power 1/5 (1.0/(1975-1970)). One is subtracted
from this quantity to get a growth rate, and a factor of 100 gives the final result as a percent
rate from 1970 to 1975 in one year increments.

In the tabular display, the words, Growth Rate in, are placed in front of the original title
unlessa TITLE optionis specified.

The MOVING option allows the user to show a table of moving averages in time series
data for a previoudly defined time series array. Following the keyword MOVI NG, an integer,
n, within parentheses, gives the number of single unit time increments over which the
moving average is computed. The moving av-erage for timet is computed from values for
timet, ..., t(n-1), wherethet' s are consecutive time points. They are not consecutive
time set selections, based on a local setting of the time set. Rather, they are time points as
defined by the time values related to the set subscripting var .

In the tabular display the words, M oving Average for, are placed in front of the original
title unlessthe TITLE option is specified.

If the keyword TRANSPOSE isincluded with the statement and the structure for the display is not explicitly specified, the
display will be transposed. This means that the first and last dimensions of the default display will be swapped.

Upon execution, the BROW SE variable statement clears the screen, displays the first page of the array and issues the
following message at the bottom of the display:

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Browse

The highlighted portions of the message represent the following options:

Fn press the Fn function key to browse up the nth dimension of the array, where n varies from 1 to 10.
The F1 key browses up the 1st dimension, the F2 key browses up the 2nd dimension, and so forth.

Shift-Fn simultaneously press the Shift and Fn keys to browse down the nth dimension of the array. The
Shift-F1 key browses down the 1st dimension, the Shift-F2 key browses down the 2nd dimension,

etc.

Browsing keys The four movement arrows at the right-hand section of the keyboard allow you to move the cursor
to the desired value. The PgUp and PgDn keys are used to move up and down the pages of the

display.
Home moves the cursor to the "top" of the display, which isthe first value on the screen.
End press the End key to exit editing mode or to exit browsing mode.

Examples:

1. Given the following definitions:

115

Promula Application Development System User's Manual

DEFI NE SET
row 3)
col (2)
page(2)
END SET
DEFI NE VARI ABLE
a(row, col , page) "A 3-Dinensional Array"
END VARI ABLE

the statement BROASE a clears the screen and produces the following display:

A 3-Dinensional Array

PAGE(1)
CoL(1) COL(2)
RON(1) 0 0
ROW(2) 0 0
ROW 3) 0 0

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

Pressing the F3 key, "browses up" the page or third dimension, as shown in the screen below:

116

Promula Application Development System User's Manual

A 3-Di mensi onal Array

PAGE(1)
ooL(1) COL(2)
ROW 1) 0 0
ROW 2) 0 0
ROW 3) 0 0

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Browse

Pressing the Shift and F3 keys simultaneously, "browses down" the third dimension, as shown in the screen below:

A 3-Dinmensional Array

PAGE(1)

coL(1) Co(2)
ROW(1) 0 0
RON(2) 0 0
ROA(3) 0 0

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

NOTE: Pressing the F1 and F2 keys do not have any effect in this example, since all elements of both the "row"
and "column" dimensions of the array fit within the screen.

2. Thefollowing diaog illustrates the BROW SE variable options.
\

| DEFI NE SET

117

Promula Application Development System User's Manual

yr(5), "The Years"
END SET

DEFI NE VARI ABLE

yval (yr) "The Year Val ues"

value(yr) "A Time Series" TYPE=REAL(30, 2)
END VARI ABLE

DEFI NE RELATI ON
TI ME(yr, yval)

END RELATI ON
yval (y) =69 + vy
value(y) = 10 * vy

BROWSE val ue TOTAL
A Tine Series

Tot al 150.
70 10.
71 20.
72 30.
73 40.
74 50.

BROWSE val ue PERCENT(yr)
Percent Distribution of A Tinme Series

Tot al 100.
70 6.
71 13.
72 20.
73 26.
74 33.

BROWSE val ue GROMH(1)
Gowmh Rate in A Tine Series

71 100.
72 50.
73 33.
74 25.

BROWSE val ue CHANGE(1)
Percent Change in A Tinme Series

71 100
72 50
73 33
74 25

BROASE val ue MOVl NE 2)
Movi ng Average for A Tine Series

71 15.
72 25.
73 35.
74 45.

00

33
00

00

00
00

118

Promula Application Development System User's Manual

The example below illustrates how to browse a variable directly from an array disk file.

Suppose you have created an array database and you wish to access one of its variables. The name of the database is
array. dba and the name of the variable is sal es. The example below shows how to browse the variable sal es
directly. In fact, the fi | e: vari abl e notation may be used to access any variable in an array file. See Chapter 4 for
more information on working with PROMULA's array files.

DEFI NE FI LE
fl
END

OPEN f1 "array. dba"

Once the array file is opened, its variables may be accessed directly using the file:variable notation. For example, the
statement BROWBE f 1: sal es displaysthe disk variable sal es onfilef 1 as shown below.

Sal es by Year ($1000)

(1)

(1) 10, 000
(2) 12,000
(3) 13, 000

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

The syntax for such direct reference of disk variablesis: file:var, where fil e is the array file containing the
variablevar that you wish to access. The notationfi | e: set may be used to refer to sets on an array file.

Variables on adisk file may aso be browsed directly by using the COPY file IMAGE statement.

The example below illustrates the DISPLAY option of the BROWSE variable statement. There are no values shown
for rows 1 and 6 of the display because variable dvar contains a zero in these rows.

DEFI NE SET
tst(2) "Tests"
grd(10) "G ade Ranges"
END SET

DEFI NE VARI ABLE
cnt(grd,tst) TYPE=REAL(S8, 1) "Frequency by class and grade range"
grdn(grd) TYPE=STRI N 20) "G ade Range Nanes"
dvar (grd) TYPE=REAL(8, 0) "Di splay Flag" VALUE=1

END

DO grd

119

Promula Application Development System User's Manual

READ (grdn: 13)
END grd
CLASS A
100- 75
74-50
49- 25
24-0
CLASS B
100- 75
74-50
49- 25
24-0
READ cnt (tst, grd)
012 32216 0 16 34 18 7
0 11 33 15 12 0 18 30 20 7
dvar (1) =0
dvar (6) =0

SELECT KEY(grd, grdn)

The statement BROABE cnt: 20: 1 DI SPLAY(dvar) producesthe display below.

Frequency by class and grade range

TST(1) TST(2)
CLASS A
100-75 12.0 11.0
74-50 32.0 33.0
49-25 21.0 15.0
24-0 6.0 12.0
CLASS B
100-75 16.0 18.0
74-50 34.0 30.0
49-25 18.0 20.0
24-0 7.0 7.0

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Browse

3.7.19 CLEARfile
Purpose:

Saves the contents of an open file on disk and then closes the file.

Syntax:

CLEAR file

Remarks:

120

Promula Application Development System User's Manual

file isthe logical identifier of the open file that you wish to save and close.

A logical file identifier is created by the DEFINE FILE statement. A file is physically opened with the OPEN file
statement.

See the description of the PROMULA noun File for more information about PROMULA's file system.

3.7.20 CLEAR variable

Purpose:
Clears scratch variables from memory.

Syntax 1.

CLEAR *
Clears all scratch variables from memory.

Syntax 2:

CLEAR (vars)
Clears only specified scratch variables from memory.
Remarks:
vars isthelist of those variable identifiers that are to be cleared.

The values of a scratch variable are not stored permanently in memory; they can be cleared or scratched from memory
when you need to make room for the values of other variables. This statement gives you the power to do what is sometimes
called "dynamic memory alocation." Thisis discussed in more detail in Chapter 4.

Examples:

The code below defines variables of four types:

DEFI NE VARI ABLE
fixd, "A Fixed Variabl e"
END VARI ABLE

DEFI NE VARI ABLE SCRATCH
scr, "A Scratch Vari abl e"
END VARI ABLE

DEFI NE SET

row(3)
END SET

DEFI NE FI LE
filea TYPE=ARRAY
END FI LE

OPEN filea "fil ea.dba", STATUS=NEW
DEFI NE VARI ABLE fil ea

dsk(row), "A Disk Variable on 'filea"
END VARI ABLE

121

Promula Application Development System User's Manual

DEFI NE VARI ABLE

rp
dd, "A Dynanic Disk Variable", D SK(filea,dsk(rp))
END VARI ABLE

The variablef i xd occupies afixed space in memory and cannot be cleared by the CLEAR statement.
Thevariable scr isascratch variable and can be cleared from memory by the CLEAR statement.
The variable dsk isadisk variable, its three values are permanently stored on disk, in afilenamed fi | ea. dba.

The variable dd is a dynamic scalar subset of the disk variable dsk; its single value is related to one of the three values of
the variable dsk. Variable dd may be cleared from memory by the CLEAR statement.

The dialog below shows that the four variables initially have the value zero:

WRI TE fi xd
A Fixed Variable 0

WRI TE scr
A Scratch Variable 0

WRI TE dsk
A Disk Variable on 'filea
ROW 1) 0 ROW 2) 0 ROW(3) 0

WRI TE dd
A Dynamic Disk Variable 0

The following statements:

fixd 10
scr 20
READ dsk
123

rp =2
READ DI SK dd

put values into the variables:

WRI TE fi xd
A Fi xed Variable 10

WRI TE scr
A Scratch Variable 20

WRI TE dsk
A Disk Variable on 'filea'
ROW 1) 1 RON2) 2 ROW3) 3
VWRI TE dd

122

Promula Application Development System User's Manual

A Dynamic Disk Variable 2

The statement

CLEAR*

clears the values of the scratch variable, scr, from memory; the fixed variable f i xd, and the disk variable, dsk, are not
effected as can be verified in the dialog below:

WRI TE fi xd
A Fi xed Variable 10

WRI TE scr
A Scratch Variable 0

WRI TE dsk

A Disk Variable on 'filea'

RON(1) 1 ROW2) 2 RON3) 3

The treatment of dynamic variables, such as dd, is a little more difficult to illustrate. dd is cleared from memory by the
CLEAR statement, but as soon as it is referenced in an expression, such asa WRITE statement, or used in the right-hand-
side of an equation, PROMULA automatically readsit in from disk. The dialog below illustrates this behavior.

STATEMENTS MEANING

dd = 100 Variable dd is given avalue via an equation.

WRI TE dd

A Dynamic Di sk Variable 100

rp =2 Variable dd is given avalue viaan explicit

READ DI SK dd READ DISK statement.

WRI TE dd

A Dynanmic Disk Variable 2

rp =3 Variable dd isgiven avaue viaan implicit read disk
VRI TE dd operation that occurs after it is CLEARed from

A Dynamic Disk Variable 2 memory then used in a WRITE statement.

CLEAR dd

WRI TE dd

A Dynanmic Disk Variable 3

rpo=1 Variable dd is given avalue viaan implicit read disk
CLEAR dd operation that occurs after it is CLEARed from

scr = dd memory then used on the right-hand-side of an

WRI TE scr equation.

A Scratch Variable 1

WRI TE dd

A Dynanic Disk Variable 1

3.7.21 CLEAR WINDOW

Purpose:

123

Promula Application Development System User's Manual

TellsPROMULA to stop using a user-defined window as the display areafor afunctional screen.

Syntax:
CLEAR type

Remarks:

type isthetype of functional screen to be returned to its default behavior, and can be one of the following:

MAIN the Main input/output Screen
PROMPT the Prompt Screen
COMMENT the Comment Screen
ERROR the Error Screen

HELP the Help Screen

This statement ends the association between a window and a functional screen that was started by a previous OPEN
WINDOW statement.

The effect of this statement depends on the popup type of the window that was opened to the functional screen being
cleared.

Clearing a screen that was opened to a popup window (i.e., a window that was defined with the POPUP option),
immediately removes the window from the display. Furthermore, any text that was covered by the window will be
redrawn.

Clearing a screen area that was opened to a static window only ends the association between the window and the
screen. The window and its contents remain on the screen.

To permanently erase a static window from the display after closing it, you must clear the display with the statements

CLEAR MAI N
VR TE CLEAR(0)

Alternatively, you may "erase" awindow by opening a static window on top of it (i.e., by covering it up).

See dso DEFINE WINDOW and OPEN WINDOW statements, and the discussion of Advanced Windows.

3.7.22 [COMPUTE] Equation
Purpose:

Makes the value (or values) of avariable equal to the value (or values) of a numeric or character expression.

Syntax:
[COWPUTE] var[(subs)] = expression[(subs)]
Remarks:
var isavariableidentifier.
subs isalist of set identifiers or dummy subscripts. When used, such subscripts denote multiple equations that
apply to the cells of multidimensional arrays.
expressi on isanumeric or character expression.
Examples:

124

Promula Application Development System User's Manual

The verb COMPUTE is required for use with the expressions involving the set colon operators. For example, given the
definition below

DEFI NE SET
rec(100)
END SET

the statements

COMPUTE rec: R = 50
SELECT rec*

will redefine the default size of set r ec changing it from 100 to 50.
The length of ther ec's selection vector may be set to 10 elements by the statement
COWPUTE rec: N = 10

The set may be restored to its original size by the statements

COWPUTE rec: R = rec: M
SELECT rec*

There are many examples of equations in the discussion of the PROMULA nouns Equation and Expression.

3.7.23 COPY
Purpose:

1. Copiesthe data and structure of an array file into another array file, or copies the definition, and optionally the data, of
an array file to atext file or to an output device, such as the screen or the printer.

2. Copies the definition of an array file into memory so its variables can be directly accessed by PROMULA without
having to include the file structure definition or any disk variable definitions in your program. See the discussion of
data management in Chapter 4.

Syntax 1.

COPY filel [INTO file2] [varspec] [DATA] [RAW

Remarks:

Syntax 1 istypically used to make full or partial copies of an array database or to generate a listing of its structure and/or
data.

filel is the identifier of the source (input) file. This must be an existing array file, i.e., has been opened with
STATUS=0OLD
file2 is the identifier of the target (output) file. This must be a new array or text file, i.e., has been opened with

STATUS=NEW. If the INTO fi | e2 option is omitted, the results of the copy will be written to the current
output device(s), screen and/or printer.

varspec alistof variablesinfi | el to be copied and may take one of the following forms.

125

Promula Application Development System User's Manual

INCLUDE(vars) specifies a partial copy to fil e2 that includes only selected variables from fil el.
Wherevar s isthelist of variablesinfil el.

EXCLUDE(vars) specifies a partial copy to fi |l e2 that excludes selected variables from fi | el. Where
var s isthelist of variablesinfil el.

If var spec isomitted, all the variables in the dataset are included in the copy.
Thevar spec option may only be used with array files.

DATA indicates that both the structure and values of selected variablesin fil el are to be copied. Here, structure
means the set, variable, and relation definitionsinfil el.

When making a text copy of an array file using the DATA option, local set selections are obeyed and the
relevant SELECT set statements are written in the output. See Example 5.

RAW indicates that you wish to make araw copy of fil el infi | e2. Thiscopy works like your operating system’s
generic file copy command. Thisis the quickest mode of the COPY statements and may not be used with any
other options.

Syntax 2:

COoPY file | MAGE
Remarks:
file istheidentifier of the array file containing the data you wish to access.

Syntax 2 reads the set, variable, and relation definitions of an array file into memory giving PROMULA direct access to
theinformation in thefile.

Thisisan aternative to using local variablesto virtually access disk variablesin an array file.

Although this feature requires less programming, it does not give you full control over how large array variables are

"paged" into memory for processing. The variables remain on disk and are accessed directly, (i.e., the values of the

variables are accessed on disk and are not read into memory.)

In summary, the COPY statement allows four types of copy operations:

1. Copy from one binary data file to another. Thisis an efficient way to make copies of binary (array and random) files
for direct use by PROMULA. If afull copy of structure and datais desired, use the RAW option for maximum copying
speed.

2. Copy from an array to atext file. Thisis away to convert binary data files into text data files that may be used as text
data by other PROMULA programs or by other software.

3. Copy an array file to an output device — the console or printer.
4. Copy an array file definition into memory for direct access using an IM AGE copy.
Examples:

The following examples of the COPY statement make copies of a database called ori gi nal . dba. The definition of this
database is shown below.

126

Promula Application Development System User's Manual

DEFI NE FI LE
orignl TYPE=ARRAY "Original Database"
END FI LE

OPEN orignl "original.dba" STATUS=NEW

DEFI NE SET ori gnl
rec(4)
col (6)

END SET ori gnl

DEFI NE VARI ABLE ori gnl
a(rec,col) TYPE=REAL(10,1) "The A Matrix"
b(rec,col) TYPE=REAL(10,1) "The B Matrix"
recn(rec) TYPE=STRI N& 10)
coln(col) TYPE=STRI N& 10)

END VARI ABLE ori gnl

DEFI NE RELATI ON ori gnl
ROW(r ec, recn)
COLUM\(col , col n)

END RELATI ON ori gnl

recn(i)= "ROV# " + i
coln(i)="COL # " + i
a(i,j) = i+10%j
b(i,j) = i+10%]

Example 1: Copy tothe Console
Given the definition of fileor i gi nal . dba above, the statement
COPY ori gnl

will display the full definition of fileori gi nal . dba on the console. This output shows the names of the sets, variables and
relations stored in the original database.

DEFI NE FI LE
ORI GN\L, TYPE=ARRAY
END

OPEN ORI GNL" ORI GNL. dba", STATUS=NEW

DEFI NE SET ORI GNL

REC(4)

CoL(6)

END

DEFI NE VAR ABLE ORI GNL

A(REC, COL), TYPE=REAL(10,1), "The A Matrix"
B(REC, COL), TYPE=REAL(10, 1), "The B Matrix"
RECN(REC), TYPE=STRI N& 10)

COLN(COL), TYPE=STRI NG 10)

END

DEFI NE RELATI ON ORI GN\L

ROW REC, RECN)

COLUMN(COL, COLN)

END

The statement

127

Promula Application Development System User's Manual

COPY orignl EXCLUDE (a,b) DATA

will display a partial definition of file ori gi nal . dba. The EXCLUDE option tells PROMULA to exclude the variables a
and b from the report, and the DATA option causes the values of the remaining variables to be displayed along with their
definitions.

DEFI NE FI LE
ORI GN\L, TYPE=ARRAY
END

OPEN ORI GNL" ORI GNL. dba", STATUS=NEW
DEFI NE SET ORI GNL

COL(6)

REC(4)

END

DEFI NE VARI ABLE ORI GNL

COLN(COL), TYPE=STRI N& 10)

RECN(REC), TYPE=STRI N& 10)

END

DEFI NE RELATI ON ORI GN\L

COLUMN(COL, COLN)

ROW REC, RECN)

END

READ COLN: 10

cCOL#1 OCOL#2 COL#3 COL#4 CO#5 OCO#6
READ RECN: 10

ROW# 1 ROW# 2 RON# 3 ROW# 4

Example 2: Full Copy — array fileto array file

The next example illustrates how to make a full copy of the database in a separate disk file. This option is most useful for
making working or backup copies of your databases. The copy will behave exactly as the original .

The DATA option isrequired to have the values in the original file copied with the definitions.

After copyingori gnl intof ul cpy, the COPY statement is used to display the contents of f ul cpy on the console.
DEFI NE FI LE
ful cpy TYPE=ARRAY "Full Copy of Original Database"
END FI LE

OPEN orignl "original.dba" STATUS=OLD
OPEN ful cpy "full copy.dba" STATUS=NEW

COPY orignl INTO ful cpy DATA

After copyingori gnl intof ul cpy, the COPY statement is used to display the contents of f ul cpy on the console.

COPY ful cpy DATA

DEFI NE FI LE
FULCPY, TYPE=ARRAY
END

OPEN FULCPY" FULCPY. dba", STATUS=NEW

DEFI NE SET FULCPY

REC(4)

COL(6)

END

DEFI NE VARI ABLE FULCPY

A(REC, COL), TYPE=REAL(10,1), "The A Matri x"

128

Promula Application Development System User's Manual

B(REC, COL), TYPE=REAL(10,1), "The B Matrix"
RECN(REC), TYPE=STRI N& 10)
COLN(COL), TYPE=STRI N& 10)

END

DEFI NE RELATI ON FULCPY

ROW REC, RECN)

COLUMN(COL, COLN)

END

READ A 12: E
1. 100000E1 2. 100000E1 3. 100000E1 4. 100000E1 5. 100000E1 6. 100000E1
1. 200000E1 2. 200000E1 3. 200000E1 4. 200000E1 5. 200000E1 6. 200000E1
1. 300000E1 2. 300000E1 3. 300000E1 4.300000E1 5.300000E1 6. 300000E1
1. 400000E1 2. 400000E1 3. 400000E1 4. 400000E1 5.400000E1 6. 400000E1

READ B: 12: E
1. 100000E1 2. 100000E1 3. 100000E1 4. 100000E1 5. 100000E1 6. 100000E1
1. 200000E1 2. 200000E1 3. 200000E1 4. 200000E1 5. 200000E1 6. 200000E1
1. 300000E1 2. 300000E1 3. 300000E1 4.300000E1 5.300000E1 6.300000E1
1. 400000E1 2. 400000E1 3. 400000E1 4. 400000E1 5.400000E1 6. 400000E1

READ RECN: 10

ROW# 1 RON# 2 RON# 3 ROW# 4

READ COLN: 10

CcaL # 1 CaL # 2 CcaL # 3 CoL#4 COL#5 COL # 6

The RAW copy is also useful for making a full working or backup copies of your databases and it is the fastest copy mode.
The copy will behave exactly asthe original.

Example 3: COPY EXCLUDE, COPY INCLUDE
The next example illustrates how to make a partial copy of your database in a separate disk file.

The first copy uses the EXCLUDE option to exclude variable a from the copy. The second copy uses the INCLUDE
option to include only variables col n and recn in the copy. Notice that without the DATA option, the values in the
original file are not copied into the new file.

DEFI NE FI LE
prtcpy TYPE=ARRAY "Partial Copy of Oiginal Database"
END FI LE

OPEN prtcpy "prtcpy. dba" STATUS=NEW
COPY orignl INTO prtcpy EXCLUDE(a)

After the copy, the statement COPY prt cpy DATA may be used to verify the results as displayed below.

DEFI NE FI LE
PRTCPY, TYPE=ARRAY
END

OPEN PRTCPY" PRTCPY. dba", STATUS=NEW
DEFI NE SET PRTCPY

REC(4)

COoL(6)

END

DEFI NE VARI ABLE PRTCPY

B(REC, COL), TYPE=REAL(10, 1), "The B Matrix"
RECN(REC), TYPE=STRI N& 10)

COLN(COL), TYPE=STRI NG 10)

END

DEFI NE RELATI ON PRTCPY

ROW REC, RECN)

COLUMN(COL, COLN)

END

129

Promula Application Development System User's Manual

READ B: 12: E
0. 000000EO
0. 000000EO
0. 000000EO
0. 000000EO

READ RECN: 10

0. 000000EO
0. 000000EO
0. 000000EO
0. 000000EO

READ COLN: 10

CLEAR prtcpy

0. 000000EO
0. 000000EO
0. 000000EO
0. 000000EO

OPEN prtcpy "prtcpy.dba" STATUS=NEW

COPY ori gnl
COPY prtcpy DATA

DEFI NE FI LE

PRTCPY, TYPE=ARRAY

END

OPEN PRTCPY" PRTCPY. dba",
DEFI NE VARI ABLE PRTCPY

STATUS=NEW

RECN(REC) ,
COLN(COL) ,
END

READ RECN:
ROW # 1
READ COLN:

TYPE=STRI NG(10)
TYPE=STRI N&(10)

10
ROW # 2
10

ROW # 3 ROW # 4

0. 000000EO
0. 000000EO
0. 000000EO
0. 000000EO

I NTO prtcpy | NCLUDE(col n,recn) DATA

0. 000000EO
0. 000000EO
0. 000000EO
0. 000000EO

0. 000000EO
0. 000000EO
0. 000000EO
0. 000000EO

Ca # 1 COL # 2 COL # 3 COL # 4 COL # 5 COL # 6

Example 4: Full Copy — array filetotext file

The following example shows how to make a copy of a database definition in atext file on disk.

DEFI NE FI LE

t xt cpy TYPE=TEXT "TEXT File For Copy"
END FI LE
OPEN orignl "original.dba" STATUS=OLD

OPEN txtcpy "textcopy.prmt STATUS=NEW

COPY orignl INTO txtcpy DATA

CLEAR t xt cpy
CLEAR orignl

The file t ext copy. pr mis shown below. This text file could be edited or used directly to create a copy of the original
database.

DEFI NE FI LE
ORI GN\L, TYPE=ARRAY
END

OPEN ORI GNL" ORI GNL. dba",
DEFI NE SET ORI GNL

REC(4)

COoL(6)

END

DEFI NE VARI ABLE ORI GNL
A(REC, COL), TYPE=REAL(10, 1),
B(REC, COL), TYPE=REAL(10, 1),
RECN(REC), TYPE=STRI NG 10)

STATUS=NEW

"The A Matrix"
"The B Matrix"

130

Promula Application Development System User's Manual

COLN(COL), TYPE=STRI NG 10)

END

DEFI NE RELATI ON ORI GNL

ROW REC, RECN)

COLUMN(COL, COLN)

END

READ A 12: E
1. 100000E1 2. 100000E1 3. 100000E1 4. 100000E1 5. 100000E1 6. 100000E1
1. 200000E1 2. 200000E1 3. 200000E1 4. 200000E1 5. 200000E1 6. 200000E1
1. 300000E1 2. 300000E1 3. 300000E1 4.300000E1 5.300000E1 6. 300000E1
1. 400000E1 2. 400000E1 3. 400000E1 4. 400000E1 5.400000E1 6. 400000E1

READ B: 12: E
1. 100000E1 2. 100000E1 3. 100000E1 4. 100000E1 5. 100000E1 6. 100000E1
1. 200000E1 2. 200000E1 3. 200000E1 4. 200000E1 5.200000E1 6. 200000E1
1. 300000E1 2. 300000E1 3. 300000E1 4.300000E1 5.300000E1 6.300000E1
1. 400000E1 2. 400000E1 3. 400000E1 4.400000E1 5.400000E1 6. 400000E1

READ RECN: 10

ROW# 1 RON# 2 RON# 3 ROW# 4

READ COLN: 10

CcaL # 1 CcaL # 2 CcaL # 3 CoL#4 COL#5 COL # 6

Example5: Partial Copy — array fileto text file using local set selections

The following example shows how to make a partial copy of a database definition in a text file on disk. In this case, local
set selections will restrict which data elements are be output by the DATA option. In order to use this feature, the sets on
the database and the local sets must have the same identifiers.

DEFI NE FI LE
txt cpy TYPE=TEXT "TEXT File For Copy"
END FI LE

OPEN orignl "original.dba" STATUS=0OLD
OPEN txtcpy "textcopy.prm STATUS=NEW

DEFI NE SET
rec(4)
col (6)

END SET

SELECT rec(1-2) col*
COPY orignl INTO txtcpy DATA

CLEAR t xt cpy
CLEAR orignl

The file t ext copy. pr mis shown below. This text file could be edited or used directly to create a partial copy of the
origina database.

DEFI NE FI LE
ORI G\L, TYPE=ARRAY
END

OPEN ORI GNL " ORI GNL. dba", STATUS=NEW
DEFI NE SET ORI GNL

REC(4)

COoL(6)

END

DEFI NE VARI ABLE ORI GNL

A(REC, COL) TYPE=REAL(10, 1), "The A Matrix"

131

Promula Application Development System User's Manual

B(REC, COL) TYPE=REAL(10, 1), “The B Matri x"
RECN(REC) TYPE=STRI N& 10)
COLN(COL) TYPE=STRI N& 10)
END
DEFI NE RELATI ON ORI GNL
ROW REC, RECN)
COLUMN(COL, COLN)
END
SELECT REC(1, 2) Notice that PROMULA inserts set selection statements
SELECT COL(3, 5, 6) here, and also restricts the range of data values for the
READs.
READ A: 12: E
3. 100000E1 5.100000E1
3. 200000E1 5. 200000E1
READ B: 12: E
3. 100000E1 5. 100000E1
3. 200000E1 5. 200000E1
READ RECN: 10
ROW # 1 ROW # 2
READ COLN: 10
COL # 3 COL # 5 COL # 6

. 100000E1
. 200000E1

[e20e)]

. 100000E1
. 200000E1

(e} e)]

Example6: IMAGE Copy

The dialog below illustrates the use of the COPY IM AGE statement. Thefilearr 1or g. dba isan array file on disk.

DEFI NE FI LE
deno TYPE=ARRAY
END FI LE
OPEN denp "arrlorg. dba" STATUS=OLD
COPY deno

DEFI NE FI LE

DEMO, TYPE=ARRAY

END

OPEN DEMO' DEMO. dba", STATUS=NEW
DEFI NE SET DEMO

YRS(4), "yrs"
sl c(4), "SIC'
END

DEFI NE VARI ABLE DEMO

EMP(SI C, YRS), TYPE=REAL(8,0), "Enploynent by Industry"
SICST(SI C, TYPE=STRI NG 30), "Nanmes for Industrial Categories"
YEAR(YRS), TYPE=STRI NG(5), "Years"

END

DEFI NE RELATI ON DEMO

KEY(YRS, YEAR)

KEY(SI C, Sl CST)

END

* Notice no sets or variables are avail able before the COPY | MAGE

AUDI T SET
AUDI T VARl ABLE

* The COPY denp | MAGE statement will read in the set, variable and
* relation definitions in the array file for virtual access

132

Promula Application Development System User's Manual

COPY deno | MAGE

* Notice all the sets and variables in arrlorg.dba are now
* available for use after the COPY | MAGE

AUDI T SET

Ident Description
YRS yrs

SIC SIC

AUDI T VARI ABLE

Ident Description

YEAR Years

SICST Nanes for Industrial Categories
EMP Enpl oynment by I ndustry

WRI TE enp
Enpl oyment by I ndustry
1990 1991 1992 1993
TRANSPORTATI ON 1 2 3 4
AGRI CULTURE 2 4 6 8
| NFORMATI ON 3 6 9 12
BANKI NG 4 8 12 16

3.7.24 DEFINE DIALOG
Purpose:

Defines adialog file for later use as on-line help or menu driven documentation.

Syntax:

DEFI NE DI ALOG "fil espec"
intro

END

TOPIC "titlel"
textl

END

TOPIC "title2"
text 2

END

END [DI ALOG

Remarks:

fil espec isthe name of the physical disk file that will store the dialog file. This name is formatted according to the file
naming conventions for your operating system.

intro isthe text introducing the dialog menu.
titlel isthetitle for the first topic (up to 25 characters).

textl isthe text of the first topic.

133

Promula Application Development System User's Manual

title2 isthetitle for the second topic.

text2 isthe text of the second topic.

The keyword END must be entered starting in column 1 and must be capitalized.

You may specify as many topics as you wish provided the resultant dialog file menu fits in the Help Screen that will be
active when the dialog file is browsed.

Didog filesare PROMULA programs which consist of text organized into one or more topics. Each topic consists of:

1. A shorttitle (up to 25 characters)
2. Thetopic text

The BROWSE DIALOG statement allows you to browse a dialog file. Upon execution of the BROWSE DIALOG
statement, the topic titles form a menu from which you may browse the topic texts in a menu-driven, conversational format
— hence its name.

The BROWSE TOPIC statement displays a specific topic for browsing.

The PROMULA Tutoria isa collection of dialog files which you may browse by selecting option 3 off the Main Menu.
Examples:

1. Thefollowing program illustrates the definition of adialog file. Thisfile has three topics, entitled:

I ntroduction
Lesson 1
Lesson 2

All topics have text associated with them.

The executablefileis stored on adisk file named b: di al og. t ut .

DEFI NE DI ALOG "b: dial og.tut"
PROMULA Pri nmer

The primer is a series of topics. Each topic contains text that you can
br owse.

END

TOPI C "I ntroduction”
The primer is a series of |essons. The | essons are designed to show you
how to write PROMULA progranms. Though arranged in order of increasing
conplexity, the |l essons nay be run in any order.

Sonetines the information displayed does not fit in the windows. Use the
novenent keys at the right end of your keyboard to browse | ong nmessages. The
up and down arrows let you scroll one line at a time. The PgDn key displ ays
t he next page. The PgUp key di splays the previous page. The Hone key brings
you back to the first page of the nessage.

END

TOPI C "Lesson 1"
In this | esson, we discuss the DEFI NE PROGRAM st at ement .

In case you don't know, a "program is a sequence of instructions that tell

134

Promula Application Development System User's Manual

PROMULA what to do. A PROMULA instruction is called a "statenent” or a
"command. "
END
TOPI C "Lesson 2"
In this |l esson we discuss the DEFI NE VARI ABLE statenent, which is
used to define the variables in your program
END
END DI ALOG

3.7.24.1 Executingthe BROWSE DIALOG Statement

The statement BROASE DI ALOG " b: di al og. t ut " produces the following display:

PROVULA Pri nmer

The priner is a series of topics. Each topic contains text that you can
browse.
I ntroduction Lesson 1 Lesson 2

End: Exit Arrows Hone: Select Enter: Browse

In this menu, the topic | nt r oduct i on is highlighted first. Use the movement keys to select a topic, and press the Enter
key to pick atopic for browsing. If you select the Lesson 2 topic, the screen below is displayed.

135

Promula Application Development System User's Manual

In this lesson we discuss the DEFINE VAR ABLE statement, which is
used to define the variables in your program

Press any key to continue

3.7.24.2 Executingthe BROWSE TOPIC Statement
The BROWSE TOPIC statement displays a specific topic from adiaog file.

To display the first topic in the dialog file use the following statement:
BROASE TOPIC "b:dialog.tut", 1

This produces the following display:

136

Promula Application Development System User's Manual

The priner is a series of lessons. The |essons are designed to show you
how to wite PROVULA prograns. Though arranged in order of increasing
conplexity, the I essons may be run in any order

Sonetinmes the information displayed does not fit in the windows. Use the
movenent keys at the right end of your keyboard to browse |ong messages. The
up and down arrows let you scroll one line at a time. The PgbDn key displ ays
the next page. The PgUp key displays the previous page. The Hone key brings
you back to the first page of the nessage

Press any key to continue

3.7.25 DEFINE FILE
Purpose:

Defines afile that may be used as a program database, an input datafile, or an output report file.

Syntax:
DEFI NE FI LE
file [TYPE=type] ["desc"]
ENb-.
Remarks:

file isthefileidentifier.
type isthefiletype, and can be one of the following:

ARRAY for a random-access file of sets, variables, and relations. You can include as many sets,
variables, and relations per file as you wish (within the capacity of your disk space). Array
files are unique to PROMULA, they are especially well suited for the storage and retrieval of
multidimensional information.

TEXT for a sequential-access file of variable-length text records. Each record consists of items (or
fields or scalar variables) that are laid out in lines of variable length (up to a maximum of 255
characters per line).

RANDOM for arandom-access file of fixed-length binary records. Each record consists of a fixed number
of variables. The variables of a random file may be scalar items, or multidimensional arrays.
You can specify as many variables per record as you wish (within the capacity of your

137

Promula Application Development System User's Manual

working space). You can include as many records as you wish (within the capacity of your
disk space).

INVERTED(n) for a random-access file of user-specified keys associated with the records of a random file.
Aninverted file provides a fast and efficient way to search a random file with symbolic keys.
n isan efficiency parameter that should equal your best estimate for the number of records that
will match a given key. The safest but probably not the most efficient value for n is the
number of recordsin the random file. Inverted files with alarger n require more disk space but
they usually require less time to search.

If the TYPE clause is omitted from the file definition, the file will be assumed to be an array file.

desc isafiledescriptor. Thisdescriptor isonly useful for program documentation purposes; it is an inline comment.

For an ARRAY or RANDOM file, the variables whose values are stored on file are defined by means of the DEFINE
VARIABLE file statement.

The OPEN file statement physically opens afile to the place on disk where the data that you want to access through fi | e
is stored. Existing files should be opened STATUS=0OLD, new files should be opened STATUS=NEW. A file must be
opened before it can be used.

The CLEAR file statement closes the disk file that was assigned to afile by a previous open.

The READ DISK and WRITE DISK statements allow you to explicitly transfer information between your program
memory space and the variablesin an array file.

The READ file and WRITE file statements alow you to physicaly transfer information between your program memory
space and the variables in text and random files.

Examples:

The following statements

DEFI NE FI LE

t xt "TEXT file" TYPE=TEXT

dbf " RANDOM Fi | e" TYPE=RANDOM

dba "ARRAY File" TYPE=ARRAY

dbi "I NVERTED Fi | e" TYPE=I NVERTED(10)
END FI LE

define threefiles. t xt, which isatext file that may be used for test input and output, dbf , which is a random type file, and
dba, which isan array file.

The structure of the array file, dba, could be used to contain weather data by the following code:
OPEN dba "wt hr. dba" STATUS=NEW

DEFI NE SET dba
days(31) "Day"
nons(12) " Month"
year (10) "Year"

END SET dba

DEFI NE VARI ABLE dba
wt hdsc(days, nons, year) TYPE=STRI NG 20) "Description"

138

Promula Application Development System User's Manual

hi t emp(days, nons, year) TYPE=REAL(10, 1) "H gh Tenp"

| ot enp(days, nmons, year) TYPE=REAL(10,1) "Low Tenp"

hi hund(days, nons, year) TYPE=REAL(10,2) "Hi gh Hum dity"

| ohund(days, nmons, year) TYPE=REAL(10, 2) "Low Humi dity"

hi bar p(days, nons, year) TYPE=REAL(10,2) "H gh Baronetric Pressure"

| obar p(days, nmons, year) TYPE=REAL(10,2) "Low Barometric Pressure"”
END VARI ABLE dba

CLEAR dba

Notice that an array file must be physically opened before its structure can be defined. This is because PROMULA
physically initializes the entire file when its structure is defined for the first time.

To add variables to an existing array file, open the file STATUS=0LD.

Alternatively, this weather data coud be set up with random and inverted files as follows:

DEFI NE VARI ABLE dbf
wt hdsc TYPE=STRI NG 20) "Descri ption"
hi tenp TYPE=REAL(10,1) "High Tenp"
| otenp TYPE=REAL(10,1) "Low Tenp"
hi humd TYPE=REAL(10,2) "Hi gh Hum dity"
| ohund TYPE=REAL(10,2) "Low Humidity"
hi barp TYPE=REAL(10, 2) "Hi gh Baronmetric Pressure"
| obarp TYPE=REAL(10,2) "Low Barometric Pressure"
wt hdat TYPE=DATE(10) " Dat e"
END VARI ABLE dbf

DEFI NE VARI ABLE dbi
dat ekey TYPE=DATE(10) "Date Key"
dat erec TYPE=I NTEGER(10) "Record"
END VARI ABLE dbi

Notice that random and inverted type files do not have to be opened when their structureis defined. Of course, they have to
be opened when they are accessed.

For examples of using random and inverted files, seethe SELECT file statement.
For examples of reading and writing to text files, see the READ file and WRITE file statements.
For additional examples on the use of array file databases in transferring data to and from disk, see Chapter 4.

See aso the COPY statement and the discussion of the file management functions FILEDELETE, FILEEXIST,
FILESIZE, FILENAME, FILEEXT, FILEPATH, and GETDIR.

3.7.26 DEFINE FUNCTION

Purpose:

Defines a single-valued function as the linear inter polation between points defined on the x-y plane. A function expresses
an arbitrary relationship of one variable, the y-variable, to another variable, the x-variable. It is defined in terms of two
arrays or variables. The first array contains the values of the x-variable while the second contains the values of the y-
variable. These variable values are the x-y coordinates of the points defining the function.

Syntax:

DEFI NE FUNCTI ON
func(arrx, arry)
ifunc(arry, arrx)

139

Promula Application Development System User's Manual

ENb”
Remarks:
func isthefunction identifier.
i func istheidentifier of theinverse of function f unc. Note, the order of arrx and ar ry isreversed.
arrx istheidentifier of the real fixed or scratch variable containing the x-coordinates of the points defining the function.
arry istheidentifier of the real fixed or scratch variable containing the y-coordinates of the points defining the function.
arrx and ar ry must belocal variables: they may not be disk variables or variables used to access disk variables.

arrx and ar ry must have the same set as their first dimension. Thisis the set that "indexes' the function. The second and
higher dimensions of ar r x and ar ry will be fixed at the first element of their respective selection vectors when the value
of the function is computed.

Although it is allowed for the sets dimensioning the second and higher dimensions of arrx to be different from those
dimensioning ar ry, doing so will interfere with the displays produced by the WRITE, BROWSE, and PLOT function
statements.

Functions are used in conditional expressions and in arithmetic expressions on the right-hand side of equations to yield the
y-value corresponding to some x-val ue argument.

The value of a function for an arbitrary argument is obtained by 2-point linear interpolation between the points defining the
function. For an argument outside its domain, the function returns the y-value of the function's nearest end point.

The argument of a function may be a constant, a scalar, a multidimensional variable, an arithmetic expression of many
variables, or another function.

A function of x, y=func(x), gives you the value of y for a given value of x. The inverse function of x, x=ifunc(y), gives you
the value of x for a given value of y (see Example 2 below).

In addition to their computational use, functions may be displayed in tabular form with the BROWSE function and
WRITE function statements, and may be viewed in plotted form viathe PLOT statement.

Examples:

1. The statements

DEFI NE SET
poi nt (4)
END SET

DEFI NE VARI ABLE
a(poi nt) "x-coordi nat es"
b(poi nt) "y-coordi nat es"
X

y
END VARI ABLE
DEFI NE FUNCTI ON
stepf(a, b)
END FUNCTI ON

READ a

140

Promula Application Development System User's Manual

-1 0 .00001 1
READ b
-1 -1 11

define the step function y=st epf (x) shown below:

(e,1) (1,1)

(=1L=-D} (0, -1)

The step discontinuity at (0, 0) is represented approximately to within £=0.00001. For an arbitrary argument x, the
expression y=st epf (x) yieldsavaluey, asfollows:

+1 I F
-1 I F
-1 I F

0001

> 0.0
=0.0
< 0.0

X X X

y
y
y

Thisisillustrated by the dialog below.

X -10

y st epf (x)
WRI TE y

-1

= +10
= stepf(x)
I TE y

2. Consider the arbitrary function shown below.

141

Promula Application Development System User's Manual

Y An Arbitrary Function

30

20

-10

'30 N T N T N T T 1 X

What are the values of y when x is -4, 1.5, or 2.6? What are the values of x when y is 18.2, 22, or 34? The dialog
below shows how to answer these questions.

DEFI NE SET
dpnt (7) "Points Defining Function"
xpnt(3) "Arbitrary Points"
END SET
DEFI NE VARI ABLE
fx(dpnt) "Function X Val ues" TYPE=REAL(10, 2) VALUE(-3,-2,-1,0,1,2,3)
fy(dpnt) "Function Y Val ues"” TYPE=REAL(10, 2) VALUE(- 20, 0, 10, 16, 20, 24, 30)
x(xpnt) "Arbitrary X Values" TYPE=REAL(10, 2)
y(xpnt) "Arbitrary Y Values" TYPE=REAL(10, 2)
END VARI ABLE
DEFI NE FUNCTI ON
fun(fx,fy) "An Arbitrary Function"
ifun(fy,fx) "The Inverse of an Arbitrary Function"
END

DEFI NE PROCEDURE shof un
VWRI TE TABLE(xpnt) TI TLE(" Functi on Val ues,
y=fun(x)"), BODY(x,y), FORVAT(20, 10)
END
READ x
-4 +1.5 +2.6
y=f un(x)
shof un
Function Val ues, y=fun(x)
XPNT(1) XPNT(2) XPNT(3)

Arbitrary X Val ues -4.00 1.50 2. 60
Arbitrary Y Val ues -20.00 22.00 27. 60
READ y
18.2 22 34
x=i fun(y)
shof un

Function Val ues, y=fun(x)
XPNT(1) XPNT(2) XPNT(3)
Arbitrary X Val ues 0.55 1.50 3.00
Arbitrary Y Val ues 18. 20 22.00 34. 00

142

Promula Application Development System User's Manual

3.7.27 DEFINE LOOKUP
Purpose:

Defines afunctional relationship between two sets of numbers.

Syntax:

DEFI NE LOCOKUP
name(np) [xyoption]

END LOCKUP
Remarks:
name istheidentifier of the function
np isthe number of X-Y pairsthat define the function.

xyoption isusedto specify valuesfor the ordered pairsin the function and is of the form
[X](Xg, X, - - an),Y(Yl, Yo, . .0, an)

The X-Y option on the DEFINE L OOKUP statement is used to specify the independent, X, and dependent,
Y, values associated with the function.

Each list of values must contain the number of points defined for the function, np. The X- and Y-values that define a
function may also be specified viathe READ function statement.

Functions defined by the DEFINE LOOKUP statement behave very much like functions defined by the DEFINE
FUNCTION statement. Both types of functions are used primarily on the right-hand-side of equations or in conditional
expressions. They yield, by linear interpolation or extrapolation, the Y -value corresponding to the specified argument, or X-
value. In this sense, a function is viewed as a set of ordered pairs of humbers that specify the X- and Y -coordinates of the
points defining the function. The argument used in the function call may be a numeric constant, a variable, or an arithmetic
expression.

The important difference between the two types of functions is that functions defined by the DEFINE FUNCTION
statement are related to a set that defines the number of X-Y pairs for the function and may contain descriptive information
for the X-Y pairs, and to a pair of arrays that contain the X-Y values. Changesin the set or inthe X or Y arrays changes the
appearance and behavior of the function. Functions defined by the DEFINE LOOKUP statement, on the other hand, are
not related to sets or variables; they contain a fixed set of paired numbers which are identified only as part of the function,
and can only be changed by the READ function statement.

The value of a function for an arbitrary argument is obtained by 2-point linear interpolation between the points defining the
function. For an argument outside its domain, the function returns the y-value of the function's nearest end point.

The argument of a function may be a constant, a scalar, a multidimensional variable, an arithmetic expression of many
variables, or another function.

In addition to their computational use, functions may be displayed in tabular form with the BROWSE function and
WRITE function statements, and may be viewed in plotted form viathe PLOT statement.

Examples:

The following example illustrates the DEFINE L OOK UP statement.

DEFI NE LOCKUP

143

Promula Application Development System User's Manual

£1(10) X(1.0,2.0,3.0,4.0,5.0,6.0,7.0, 8.0, 9.0, 10.0),
Y(1.2,2.3,3.8,4.5,5.5,6.9,9.9,12. 0, 14. 5, 15. 9)
f2(10)
END LOOKUP

Here, the DEFINE LOOKUP statement is used to create two functions. f 1, which gets initial values in its definition with
anxyopt i on; and f 2 which hasitsinitial values equal to zero. Both of these functions have 10 ordered X-Y pairs.

See dso the READ function, WRITE function, BROWSE function, PLOT and DEFINE FUNCTION statements for
more information on functions.

3.7.28 DEFINE MENU
Purpose:

Defines a screen menu for later use.

A screen menu is a type of program interface designed to help its user either to pick from alist of options or to display
and/or edit data values.

Depending on content, intended use, and appearance, there are two kinds of menus:

1. Pick menus to help the user make a selection from a set of options using the SELECT menu statement. There are
three types of pick menus: (1) Simple, one-window pick menus defined with a basic DEFINE MENU statement, (2)
Popup, two-window pick menus defined with a DEFINE MENU POPUP statement, and (3) Pulldown pick menus
defined witha SELECT PULLDOWN statement

2. Data menusto create screens for data entry or display using the EDIT menu statement

This section describes the DEFINE M ENU statement. For additional information and examples of using menus, refer to

the examples at the end of this section and to the sections covering the SELECT menu, EDIT menu, SELECT
PULLDOWN, and SELECT FIELD statements.

Syntax 1: Simple Pick M enu Definition

DEFI NE MENU nenu [VARI ABLE]

text...
text .. \choicell \choice2\ text...
text... \choice3\ \choice4\ text...
END
Remarks:
menu isthe menu identifier.
t ext is arbitrary text that you may enter anywhere in the menu template to describe menu selection fields. To

produce fancy menu displays, you may use any character that you can enter with your text editor including
those that are not shown explicitly on the keyboard.

choi cen isthelabel for the nth selection field in the pick menu. The selection fields are ordered from 1 to n as you go
from left to right and from top to bottom of the menu. Up to 20 selection fields may be defined.

Thet ext and choi cen elements may contain any character except:

the backslash character (\), which is reserved to set off the selection fields of the menu

144

Promula Application Development System User's Manual

the at character (@), which is reserved to set off data fields to be edited in data menus
the tilde character (~), which isreserved to set off display-only fields in data menus.

VARI ABLE isakeyword labeling the pick menu asaVARIABLE pick menu. This keyword is only required if you intend
to usethe SELECT FIELD statement to modify the menu at runtime.

Simple pick menus are much simpler to define than popup pick menus, but are not as flashy or flexible as popup or
pulldown pick menus.

Syntax 2: Popup Pick M enu Definition

DEFINE MENU nenul, POPUP(swi nd, twi nd) ~ | MENU HEADER
[VARI ABLE] n
text... "~ | SELECTION SCREEN
text... \choicell \choice2\ text... DEFINITION
text... \choice3\ \choice4\ text...
END
FI ELD n, SELECT=char, HELP=t opi c,] FIELD STATEMENT
ACTI ON=code
desc
END
MENU menu2 " | SUBMENU DEFINITION
text...
text... \choicelll \choicel2\ text...
text... \choicel3\ \choiceld\ text...
END
FI ELD n, SELECT=char , HELP=t opi c,
ACTI ON=code
desc
END
END nenul
Remarks:

A popup menu definition consists of a top level menu definition and several optional submenu definitions. Each menu
definition consists of a selection screen and a group of FIELD statements. The keyword POPUP following the identifier
of amenu indicates to PROMULA that the menu is a popup pick menu.

menul isthe identifier of the menu.

swi nd is the name of the screen area defined via a DEFINE WINDOW statement that will display the selection
screens when the menu is executed.

twind isthe name of the screen area defined viaa DEFINE WINDOW statement that will display the description of
each selection field asit is highlighted during menu execution.

145

Promula Application Development System User's Manual

t ext

is arbitrary text that you may enter anywhere in the menu template to describe menu selection fields. To
produce fancy menu displays, you may use any character that you can enter with your text editor including
those that are not shown explicitly on the keyboard.

choi cen isthelabel for the nth selection in the pick menu. The selection fields are ordered from 1 to n as you go from

char

topic

code

desc

menu2

left to right and from top to bottom of the menu template.
Thet ext and choi cen elements may contain any character except:
the backslash character (\), which is reserved to set off the selectionsin pick menus

the at character (@), which is reserved to set off data fields to be edited in data menus
the tilde character (~), which isreserved to set off data fields to be displayed but not edited in data menus.

isan integer that indicates to which selection field the FIEL D statement corresponds.

isacharacter that can be used to select the desired field. Any printable character may be used.

is the sequence number, as defined by its place in a dialog file, of a specific topic containing information
relevant to the selection field. The dialog file used is determined by a SELECT HELP statement. Pressing
Alt-H will select this topic from the program's help file and display it in the Help Screen. If no help has been
defined, you can enter a 0 for this parameter.

isanumber between 0 and 255 or the name of a submenu defined in this DEFINE M ENU statement. If code
is a number, the value will be returned when the field is selected; if code is a submenu name, the submenu

will be displayed for selection.

istext that describes the selection field.

isthe identifier of a submenu. Each submenu is defined in the same way as the top level menu except that the
submenu header only includes the name of the submenu.

VARI ABLE isakeyword labeling the pick menu asaVARIABLE pick menu. This keyword is only required if you intend

to usethe SELECT FIELD statement to modify the menu at runtime.

Syntax 3: Data Menu Definition

DEFI NE MENU nenu

text...
text... @oog® @aGEEodtext. ..
text. .. @oago @aooado t ext . . .
END
Remarks:
menu isthe menu identifier.
t ext is arbitrary text that you may enter anywhere in the menu template to describe menu selection fields. To

produce fancy menu displays, you may use any character that you can enter with your text editor including
those that are not shown explicitly on the keyboard.

Thistext may contain any character except:
the backslash character (\), which is reserved to set off the selectionsin pick menus

the at character (@), which is reserved to set off data fields to be edited in data menus
the tilde character (~), which isreserved to set off data fields to be displayed but not edited in data menus.

146

Promula Application Development System User's Manual

marks the space in the template where the value of a program variable will be displayed for editing.

~~~~~~~~ marks the space in the template where the value of a data field will smply be displayed and will not be
available for editing.

Data menus contain a number of fields to be viewed and/or edited by the user. Each field in the menu is denoted by a series
of contiguous "at signs', @ equal in number to the desired number of characters in the data field. The fields are ordered
from left to right and from top to bottom of the menu template.

Examples:

The following example illustrates the definition and use of one screen pick and data menus; it illustrates the DEFINE
M ENU statement as well asthe SELECT menu and the EDIT menu statements.

Define several variables for use with the example.

DEFI NE VARI ABLE

a "A val ue"

b "B val ue"

t ot "Sum of A + B"

date " Dat e" TYPE=DATE( 8)
nanme " Nanme" TYPE=STRI N& 10)
option "Menu sel ection"

END VARI ABLE
Define a Data Menu.

DEFI NE MENU dat a

khkkhkkkhkkhkkhkkhkhkhkkhkhkkhhkkdhhkhkhrhkkdkhkkrkk*x*x A Data '\/Enu R R O O O

Enter/Edit Inputs

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

Rk S S R SRRk S S e S S R R R O S R R AR S ok S S R R S bk S b S R R T S o

END

Define a Pick Menu.
DEFI NE MENU pi ck

R R O O A PI Ck '\/Enu R O S O S

Mai n Sel ection Menu

Press the desired Function key
F1 \Return to PROMULA\

or
F2 \Edit |nput Val ues\

E R I
ECTEE I T I I N I

1. Press the UP and DOMWN arrow keys

147



Promula Application Development System User's Manual

* F3 \ Cal cul ate Tot al s\ to nove the bounce bar *
* *
* F4 \Di spl ay Resul ts\ 2. Press the Enter key to pick *
* *
R R S S ko S o S O R O S O S I kS S S O

END

Define a procedure to control the execution of menu "pick" and menu "data’

DEFI NE PROCEDURE st art
* Sel ect from Menu "pick"
SELECT pi ck(option)
* Edit a Data Menu
DO I F option EQ 2
EDI T dat a(nane, date, a, b)
start
END option 2
* Conpute Totals
DO I F option EQ 3
t ot =a+b
start
END option 3
* Display Results
DO IF option EQ 4
WRI TE (" Nane ", "Date ","A Value ","B Value ","Sumof A + B")
WRI TE (name\ 1, date\ 11, a\ 21, b\ 31, tot\ 41)
ASK CONTI NUE
start
END option 4
END start

The statement SEL ECT pick(opt i on) in procedurest art produces the display below:

Rk b Sk ok S R R Ok S SRk S b A PI Ck ,\/Enu
Rk b Sk S S S S O S O kb o R

*

Ab un:ce bar highlights the first selection Return to PROMULA, whijch is the text bel%/ﬁeun he first two backslashes in

the definition of menu pi ck. You may make ¥&ictionpy ~ S€! ection

. : pressing afunction key F1, F2, F3, or F4 (or anumeric key 1,2,3,0r 4).
., using the movement keys and the Enter key to pick a selection.

B. , pointing and clicking in the selection field (between the back slashes) with a mouse or gther pointer device.

*
If yqu select option 2 — Edit Input Values — PROMULA will execute the statement EDI | dat a( nane, date, a, b)

and

will display the following EDIT menu display: Press the desired

148



Promula Application Development System User's Manual

kkkkkkhkkhkhkhkhhkhhkhkhkhkkhkkkkkkkk k% A mta '\/Enu kkkkkkhkkhkkkkkkkhkkhkkhkkhkhkkkxkx

* *
*  Enter/Edit Inputs *
* *
* *
* Name Dat e: 00/ 00/ 00 *
* *
* A Val ue: 0 *
* *
* B Val ue: 0 *
* *

LR T E]

End: Exit Arrows Hone: Sel ect Enter: Edit

Here, the bounce bar is highlighting the ten spaces following the text "Nane : . By pressing the Enter key, you may
introduce a particular name for this data field. By using the movement keys, you may edit the rest of the data fields to
produce the following display:

KAK KKK KK KK KK KR KKK KKK IR KRRk *hkk A Datg Monu FXAFFxkxakhdkdkkkkhhhkkxxhhkk k%

* *
*  Enter/Edit Inputs *
* *
* *
* Name Mark J. Date: 08/21/91 *
* *
* A Val ue: 1 *
* *
* B Val ue: 2 *
* *

LR R T E]

End: Exit Arrows Home: Select Enter: Edit

The following example illustrates the definition and use of Popup pick menus. First, the structural entities of the program:
variables, windows, and menus are defined.

DEFI NE VARI ABLE

149



Promula Application Development System User's Manual

a "A val ue"

b "B val ue"

prd "Product of A * B"
dat e " Dat e"

name " Nare"

option "Menu sel ection"

END VARI ABLE

DEFI NE W NDOW
wwi nd(0, 5, 79, 21, WHI TE/ BLACK, NONE)
swi nd(1, 1, 78, 3, WHl TE/ BLACK, FULL/ HEAVY)
twi nd(1, 23, 78, 23, WHI TE/ BLACK, FULL/ SI NGLE)
END W NDOW

DEFI NE MENU pi ck, POPUP(swi nd, twi nd)

TYPE=DATE( 8)
TYPE=STRI N 10)

Main Sel ection Menu: R)eturn E)dit Calculate D)i spl ay

END

FI ELD 1, SELECT=R, HELP=0, ACTI ON=10
RETURN -- Return to PROMULA

END

FI ELD 2, SELECT=E, HELP=0, ACTI ON=20
EDIT -- Edit Input Values

END

FI ELD 3, SELECT=C, HELP=0, ACTI ON=nmenu2
CALCULATE -- Calculate Totals

END

FI ELD 4, SELECT=D, HELP=0, ACTI ON=40
DI SPLAY -- Display Results

END

*xxxkxkxxxxkxx Dafine of a subnmenu call ed nmenu2
MENU nenu2

Cal cul ations Menu: R)eturn C)ompute

END

FI ELD 1, SELECT=R, HELP=0, ACTI ON=pi ck
RETURN -- Return to Main Sel ection Menu

END

FI ELD 2, SELECT=C, HELP=0, ACTI ON=30
COWPUTE -- Conpute the product of A and B

END

END pi ck

DEFI NE MENU dat a

R S O O A Data

*
* Enter/Edit Inputs
*
*
* Nane
*
* A Val ue: Q@OQOCOGD
*
* B Val ue: @oQococo
*
*
END

Next, a procedure to control the program is defined.

DEFI NE PROCEDURE ctrl
SELECT pi ck(option)
DO I F option EQ 10

Rk S R SRRk S S e S S R R R S b Sk S R R AR ok S T S R R S b Sk S b S S R R T S o

'\/Enu R R O O O O

*
*
*
*
*
*
*
*
*
*
*

150



Promula Application Development System User's Manual

* Exit procedure
BREAK ctrl
ELSE option EQ 20
* Edit a Data Menu
EDI T dat a(nane, date, a, b)
ELSE option EQ 30
* Conpute Product
prd =a* b
ELSE option EQ 40
* Display Results
WRI TE (" Name ", "Date ","A Val ue ","B Value ","Product of A* B")
WRI TE (name\ 1, dat e\ 11, a\ 21, b\ 31, prd\ 41)
WRI TE (/"Press any key to continue.") CLEAR(-1)
END option
ctrl
END ctrl

Before using the menu, you must open up a window to the main screen using the statement OPEN wwi nd MAI N. Executing
procedurect r I produces the display below:

Mai n Sel ection Menu: R)eturn E)dit Qalcul ate D)isplay

RETURN -- Return to PROMULA

A bounce bar highlights the 1st selection R) et ur n, which is the text between the two backslashes in the definition of menu
pi ck. The descriptions of the selection fields appear in the screen area, t wi nd. You may press the selection characters R,
E, C, or Dto make a selection, or use the movement keys and the Enter key to pick a selection.

Pressing the E key will execute the statement EDI T dat a( nane, dat e, a, b) which produces the following screen:

151



Promula Application Development System User's Manual

Mai n Sel ection Menu: Ryeturn E)dit Qalculate D)i spl ay

IR RS S S S SRR EEEEEEEREEEEEEEEEEEEE] A Data 'vbnu kkkkkkkkkkkkkkkkkkkhkhkkkkkkkk*
* *
*  Enter/Edit Inputs *
* *
* *
* Name Date: 00/00/00 *
* *
* A Value: 0 *
* *
* B Val ue: 0 *
* *
LR R R RS S S SRR RS SRR R RS S E R SRR RS SRR R R R R R R R R R R EEEEEREEREEEEEEEEEEEES]

End: Exit Arrows Home: Select Enter: Edit
EDIT -- Edit Input Values
Here, the bounce bar is highlighting the ten spaces following the text "Nane . ". By pressing the Enter key, you may

introduce a particular name for this data field. By using the movement keys, you may edit the rest of the data fields to
produce the following display:

After editing, you will return to the menu below, from which you can calculate the product of A and B, and display results
in the Main Screen.

3.7.29 DEFINE PARAMETER

Purpose:

Defines numeric parameters for procedures. Parameters are used to transfer data val ues to and from procedures.

Syntax:

DEFI NE PARAMETER
parani (sets)]["desc"][ TYPE=t ype]

END
Remarks:
par am isthe parameter identifier.
sets isalist of setsthat define the structure of the parameter.
desc isaparameter descriptor.
type isthetype of the parameter and may be one of the following:

REAL to specify real values

152



Promula Application Development System User's Manual

INTEGER to specify integer values
MONEY  to specify money values.

Other types of parameters are allowed, but they are of limited use because their val ues cannot be passed to or from
the actual arguments of the procedure.

A parameter is a numeric variable which is used locally within a procedure. Parameters may be scalars or multidimensional
arrays. A parameter identifier cannot be defined or referenced outside a procedure.

A procedure pr oc with parametersa, b, c,... may be called into execution by simply entering its name and specifying an
ordered list of variables (often referred to as the actual arguments of the procedure) corresponding to the parameter list.
The type and order of variables in the variable list must agree with the type and order of the parameters as defined in
procedure pr oc.

proc(x,y,z,...)

If the parameters are multidimensional arrays, the variable arguments of the procedure must be followed by the identifiers
of the setsthat dimension them.

proc(x(setl,set2,...),y(setl,set2,...),z(setl,set2,...),...)

NOTE: The values of parameters do not use any storage, nor do they retain their values between procedure calls.
Examples:

The procedure i nx defined below has three parameters:

DEFI NE PROCEDURE i nx
DEFI NE PARAMETER

a "Val ue to be conmpared with b"
b "Val ue to be conpared with a"
c "Mn of (a,b)"

END PARAMETER

c =a

DO IF b LT c
c=Db

END | F

END PROCEDURE mi nx

The purpose of this procedure is to compare the value of b with the value of a and to return the minimum of the two values
in parameter c.

This procedure, when called by another procedure cni n, compares two variables, x and y, and returns the minimum of the
two in variable z, as shown in the dialog below:

DEFI NE VARI ABLE
X
y
z

END VARI ABLE

DEFI NE PROCEDURE cmi n

m nx(x,y, z)

VRITE ("X=",%." "."y=".y." " "MNX,y)=".2)
END PROCEDURE chi n

X 3
y 4
cmn

x=3 y=4 MN(x,y)=3

153



Promula Application Development System User's Manual

Procedure cmi n callsinto execution procedure mi nx. The calling statement is:
m nx(x,y, z)

From this, you can see that variable x corresponds to parameter a, variable y corresponds to parameter b, and variable z
corresponds to parameter c.

Procedure st at s takes as its argument a two-dimensional array of values. It displays the values of each column of the array
in ascending order and computes and displays the number of values, the total, and the mean of each column.

DEFI NE SET
pnt (5)

col (2)

END SET

DEFI NE VARI ABLE
xval (pnt, col ) TYPE=REAL(10, 2) "X VALUES"
END VARI ABLE

DEFI NE PROCEDURE st at s
DEFI NE PARAMETER

vec(pnt,col) "lnput Table"

n "Nunber of Val ues"

t ot "Total of Input Vector"

ave "Average of Input Vector"
END PARAMETER
DO col

SORT pnt USI NG vec

n=col : s

WRI TE CENTER("I NPUT VECTOR #"n:-2/"-----cmmmommmaao ")

DO pnt

WRI TE CENTER(vec: 6: 2)

END

SELECT pnt*

tot = SUMi) vec(i)

n = pnt: N

ave = tot/n

WRI TE CENTER(" n="n-5"TOTAL = "tot:-10:2,"MEAN = "ave:-10: 3/)
END col

END PROCEDURE st ats
READ xval (col, pnt)

31 11 21 91 41
32 42 52 12 12

Given the defintions above, the statement

stats( xval (pnt,col) )

produces the report below.

I NPUT VECTOR #1

n=>5 TOTAL = 195. 00 MEAN = 39. 000

154




Promula Application Development System User's Manual

I NPUT VECTOR #2

n=>5 TOTAL = 150. 00 MEAN = 30. 000

3.7.30 DEFINE PROCEDURE
Purpose:

Defines a group of statements for later execution as a single unit.

Syntax:

DEFI NE PROCEDURE proc [conment ]
st at ement

END comrent
Remarks:
proc isthe procedure identifier.
st at ement isany executable statement.

coment isoptional text you wish to enter as an in-line comment.

Definitions are not allowed within procedures, except for the DEFINE PARAMETER statement, which defines procedure

parameters. Similarly, datafor a READ statement is not alowed in a procedure.

A procedure is executed by the [DO] procedur e statement, i.e., by simply entering its name.

PROMULA supports recursive procedures, i.e., a procedure can call itself into execution. A procedure can call other

defined procedures into execution.
Examples:

1. Thefollowing statements

DEFI NE PROCEDURE hello -- wite a greeting
WRI TE "Hell o there!"
END PROCEDURE hel | o

define the procedure hel | o whose sole purposeisto issue the message Hel | o t her e! , asshown in the dialog below

DO hello
Hell o there!

2. Thefollowing proceduresr dsal es andt sal es

DEFI NE PROCEDURE rdsal es
VWRI TE "Enter Monthly Sal es”

155




Promula Application Development System User's Manual

READ sal es
END PROCEDURE rdsal es

DEFI NE PROCEDURE t sal es
rdsal es
total = SUM nonth)( sal es(nonth) )
WRI TE ("Total Annual Sales ",total)
END PROCEDURE t sal es

execute as follows:

tsal es

Enter Monthly Sal es

1000 1100 1200 1150 1300 1350
1400 1600 1000 1100 1570 1600
Total Annual Sales 15,370

Above, proceduret sal es calls procedurer dsal es into execution to produce the same results as those of Example 2.

3. Thefollowingis aprocedure with parameters

DEFI NE PROCEDURE xmax
DEFI NE PARAMETER
a
b
c "Max of (a,b)"
END PARAMETER

DOIFaGEDb
c =a
ELSE

c=b
END | F

END PROCEDURE xmax

The purpose of this procedure, xmax, isto compare two values and return the larger of the two, as shown in the dialog
below:

DEFI NE PROCEDURE cal [ xmax
xnmax(x,y, z)
END PROCEDURE cal | xmax

o< X
—nn

®
mX wN

| xmax
TE z

“3

3.7.30.1 Dynamic Procedures

Dynamic procedures are used in dynamic simulations. In dynamic simulations modeling, variables interact with each other
and change over time. PROMULA has several features that facilitate the development of dynamic models. these include
time series sets, system Time parameters, the TIME, RATE, and LEVEL statements, and dynamic procedures.

Dynamic procedures contain RATE and LEVEL statements which divide the procedure into three separate sections.

1. TheInitial section. Here, all time parameters have the values that were assigned by the last TIME statement. The
variables DT, BEGINNING, and ENDING maintain these original values throughout the run of the dynamic
procedure. The Initia section includes al the statements in the procedure preceding the RATE section and its
equations are evaluated once — at the beginning time point (or interval) of the simulation period.

156



Promula Application Development System User's Manual

2. TheRATE section. The start of the RATE section is indicated by the RATE statement. The RATE section is the
second section of a dynamic procedure and its equations are evaluated at each time point (or interval) of the simulation
run. In contrast to LEVEL equations, both sides of RATE equations are evaluated at the same time point (or interval).
At the end of the RATE section, the value of the time parameter TIME is examined. If TIME+DT exceeds the value
of ENDING, the execution of the procedure ends. If TIME+DT does not exceed the value of ENDING, then TIME is
incremented by DT, and the execution of the procedure proceedsto the LEVEL section.

3. TheLEVEL section. The start of the LEVEL section is indicated by the LEVEL statement. The LEVEL section
follows the RATE section and its equations are also evaluated at each time point (or interval) of the simulation. The
lefthand side of each LEVEL equation, however, is evaluated at TIME+DT in terms of the time variables on the
righthand side which are evaluated at TIM E — the previous time point (or interval). It is the equations of the LEVEL
section which move the dynamic variables through time. After execution of the statements in the LEVEL section,
execution returns to the beginning of the RATE section.

Examples:

An example of adynamic procedure is shown below:

DEFI NE PROCEDURE DYNAML
** Begin Initial Section
WRI TE CENTER("Initial Section. Tine=",TI M)
POPT=100000
** End Initial Section / Begin Rate Section
RATE ( BRTYR=BRTV, MRTYR=MRTV)
WRI TE CENTER(/"Rate Section. Time=", Tl ME)

DRGV = DRE Tl ME)

BTHS = POPT * BR * BRTV
MGNTS = POPT * MR * MRTV
DTHS = POPT * DR * DRGV
WRI TE POPT

VWRI TE BTHS

WRI TE MGNTS

WRI TE DTHS

WRI TE BRTV: : 4
WRI TE MRTV: : 4
WRI TE DRGV: : 4

** End Rate Section / Begin Level Section

LEVEL ( POPYR=POPT, BTHYR=BTHS, DTHYR=DTHS, MGTYR=MGNTS)
WRI TE CENTER (/" Level Section, Tine=", TIM)
POPT = POPT + (DT * BTHS) + (DT * MGNTS) - (DT * DTHS)
WRI TE POPT

END PROCEDURE DYNAML

In procedure DYNAML, the population size is set to 100,000 in the initial section. The RATE section computes local variables
BRTV, and MRTV by linear interpolation of the values of the exogenous time series variables BRTYR and MRTYR and uses these
values to compute time-specific values for BTHS, and MGNTS. The value of DRGV is computed via function DRG then used in
computing DTHS. In the LEVEL section, the results are transferred from the endogenous scalar variables, POPT, BTHS,
DTHS, and MGNTS to the output time series variables, POPYR, BTHYR, DTHYR, MGTYR as specified in the LEVEL statement;
and the value of POPT is computed to reflect the changes that occurred during the last time interval.

The code required to implement the procedure above to model population values over time is displayed below.

DEFI NE SET
timeb(3) "Set of Years for Birth Rate Trend" TI ME( 1990, 1995, 2000)
timem(4) "Set of Years for Mgration Rate Trend" TI ME(1990, 1993)
year (16) "Set of Years to Be Mdel ed" TI ME( 1990, 2005)

END SET

157



Promula Application Development System User's Manual

DEFI NE VARI ABLE

BR "Annual Birth Rate " VALUE = 0. 0065
DR "Annual Death Rate " VALUE = 0.05
VR "Annual Mgration Rate " VALUE = 0.001
BRTV "Birth Rate Trend Val ue "
VRTV "Mgration Rate Trend Val ue "
DRGV "Death Rate G aph Val ue "
BRTYR(tineb) "Birth Rate Trend" VALUE( 1, 0. 8, 0. 8)
MRTYR(timen) "M gration Rate Trend" VALUE(1,1,-1,-1)
POPT "Total Popul ation "
BTHS "Births per Year "
DTHS "Deat hs per Year "
MGNTS "Net Mgrants per Year "
POPYR(year) "Total Popul ation"
BTHYR(year) "Births"
DTHYR(year) "Deaths"
MGTYR(year) "Net M grants”
END VARI ABLE
DEFI NE LOOKUP
DRE 3), X(1990, 1995, 2005), Y(1,0.8,0.7)
END LOOKUP
DEFI NE TABLE
tab(year), FORVAT(20,10), BODY(POPYR, BTHYR, DTHYR, MGTYR)
END REPORT

DEFI NE PROCEDURE dynani
WRI TE CENTER("Initial Section. Time=",TlME)
POPT=100000

RATE ( BRTYR=BRTV, MRTYR=MRTV)
VWRI TE CENTER(/"Rate Section. Time=", Tl ME)

DRGV = DRE Tl ME)

BTHS = POPT * BR * BRTV
MGNTS = POPT * MR * MRTV
DTHS = POPT * DR * DRGV
WRI TE POPT

VWRI TE BTHS

VWRI TE MGNTS

WRI TE DTHS

WRI TE BRTV: : 4
WRI TE MRTV: : 4
WRI TE DRGV: : 4

LEVEL ( POPYR=POPT, BTHYR=BTHS, DTHYR=DTHS, MGTYR=MGNTS)
WRI TE CENTER (/"Level Section, Tine=", TIMg)
POPT = POPT + (DT * BTHS) + (DT * MGNTS) - (DT * DTHS)
WRI TE POPT

END PROCEDURE dynani

Given the definitions above, the statements

TIME(1, 1990, 1993), Sl ZE(5, 0)

dynaml

SELECT year (1-4)

tab TITLE "Results for Dynamic Sinulation (DT = 1 Year)"

generate the following report as the popul ation simulation procedure DYNAML "moves through time'.

Initial Section. Tinme= 1990

158




Promula Application Development System User's Manual

Rat e Section. Tine=1, 990

Total Popul ation (1990) 100, 000
Bi rths per Year (1990) 650
Net M grants per Year (1990) 100
Deat hs per Year (1990) 5, 000
Birth Rate Trend Val ue (1990) 1.0000
M gration Rate Trend Val ue (1990) 1.0000
Death Rate Graph Val ue (1990) 1.0000

Level Section, Tine=1, 991
Total Popul ation (1991) 95, 750

Rate Section. Tine=1, 991

Total Popul ation (1991) 95,750
Births per Year (1991) 597
Net M grants per Year (1991) 96
Deat hs per Year (1991) 4,596
Birth Rate Trend Val ue (1991) 0.9600
M gration Rate Trend Val ue (1991) 1.0000
Death Rate Graph Val ue (1991) 0.9600

Level Section, Tine=1, 992
Total Popul ation (1992) 91, 847

Rat e Section. Tine=1, 992

Total Popul ation (1992) 91, 847
Births per Year (1992) 549
Net M grants per Year (1992) -92
Deat hs per Year (1992) 4,225
Birth Rate Trend Val ue (1992) 0.9200
M gration Rate Trend Val ue (1992) -1.0000
Death Rate Graph Val ue (1992) 0.9200

Level Section, Time=1,993
Total Popul ation (1993) 88,080

Rate Section. Tine=1, 993

Total Popul ation (1993) 88,080
Births per Year (1993) 504

Net M grants per Year (1993) -88
Deat hs per Year (1993) 3,876
Birth Rate Trend Val ue (1993) 0.8800
M gration Rate Trend Val ue (1993) -1.0000
Death Rate Graph Val ue (1993) 0.8800

Results for Dynamic Sinulation (DT = 1 Year), 1990 to 1993

1990 1991 1992 1993
Total Popul ation 100, 000 95, 750 91, 847 88, 080
Births 650 597 549 504
Deat hs 5, 000 4,596 4,225 3,876
Net M grants 100 96 -92 - 88

3.7.31 DEFINE PROGRAM
Purpose:

159




Promula Application Development System User's Manual

Defines the beginning of a program and an optional program descriptor. Physically, it clears working space and is the first
instruction of the default executable program segment called M AIN.

Syntax:
DEFI NE PROGRAM [ "desc"]
st at ement
[ENID. PROGRAM [ DO proc]
STOP
Remarks:

desc isadescriptor for the program. Tabular reports produced by the program have desc as part of their page heading.
The SELECT HEADING statement turns the heading on and off.

proc istheidentifier of a procedure that should be executed at startup of the program — when the program segment is
loaded.

The DEFINE PROGRAM statement is optional, i.e., you do not have to use it; if you do use it, however, it must be the
first statement of your program.

If you plan to save the program on disk for later execution, then you must use the DEFINE PROGRAM statement to
specify the beginning of the executable program, and the OPEN SEGMENT statement to open afile on disk in which to
store the program.

The END PROGRAM statement specifies the end of an executable program and writes it to a previously opened segment
file. The default segment identifier of a saved executable programis MAIN.

The STOP statement simply stops execution of a program and returns control to the PROMULA Main Menu or to
command mode depending on how the program was started.

Examples:

OPEN SEQVENT "sanpl e. xeq" STATUS=NEW
DEFI NE PROGRAM " A Sanpl e Progrant
DEFI NE PROCEDURE st art

WRI TE CENTER(/////"Hello World!'")
END PROCEDURE st art
END PROGRAM DO start
STOP

The code above defines a short "hello world" program. The program will be saved on disk as the file sanpl e. xeq. The
title, A Sanpl e Program will appear with the current date and a page number at the upper right-hand corner of all
subsequent displays produced by the WRITE variable statement, unless you turn it off with the SELECT HEADING =
OFF statement.

3.7.32 DEFINE RELATION
Purpose:
Defines arelation between the elements of a set and the contents of a vector variable structured by that set.

Syntax:

DEFI NE RELATION [fil €]

160




Promula Application Development System User's Manual

type (set, vec)

END

Remarks:

file istheidentifier of an array file that has been opened to alocation on disk with the OPEN file statement. If fi | e is
specified, the relation will become part of the array file structure.

set isthe identifier of the set whose elements are to be related to the values of the vector vec.

vec isthe identifier of the vector variable whose values are to be related to the elements of the set .

type isthetype of relation between set and vec and may be one of the following:

ROW specifies the variable whose values will serve as the primary descriptor for a set's elements. The
primary descriptor values are used to label rows of values classified by the set in WRITE,
BROWSE, and EDIT statements. They are also used in bar plots, page headings, and displays of
the set itself.

COLUMN  gpecifies the variable whose values will serve as the column descriptor for a set's elements. The
column descriptor values are used to label columns of values classified by the set in WRITE,
BROWSE, and EDIT statements.

KEY specifies the variable whose values will serve as the codes for a set's elements. If no ROW relation
for the set is specified, the code values, also referred to as keys, are used as the primary descriptors
for the set. If no COLUMN relation for the set is specified, the code values are used as column
descriptors. In addition, set codes may function as set element identifiers in displays of the set and
in coded set selections.

TIME specifies the variable whose values will serve as the time values for a set's elements. If no ROW
relation for the set is specified, the time values, also referred to as keys, are used as the primary
descriptors for the set. If no COLUMN relation for the set is specified, the time values are used as
column descriptors. In addition, time values may function as set element identifiers in displays of
the set and in coded set selections. If aset hasa TIME relation, it becomesa Time Series Set.

A relation isnot valid unlessvec isan array variable having set asitsfirst dimension.

The SELECT RELATION statement may also be used to define relations between sets and variables.

Examples:

The following example illustrates using variables and relations to create descriptors for sets and array variables:

DEFI NE SET
row 3)
col (2)
state(2)
year (2)

END SET

DEFI NE VARl ABLE
rows(row) "Row Descri ptors" TYPE=STRI N& 20)
col s(col) " Col um Headi ngs" TYPE=STRI N& 8)
st code(state) "State Codes" TYPE=CODE( 5)
yearv(year) "Year Val ues" TYPE=I NTEGER( 5)
vara(row, col,state,year) "A 4-D nensional Array" VALUE( 1)

161




Promula Application Development System User's Manual

END VARl ABLE

Given these definitions, the statement WRI TE var a produces the display below.

ROA(1)
RO 2)
RON( 3)

ROA(1)
RO 2)
RON( 3)

ROA(1)
RO 2)
RON( 3)

ROA( 1)
ROW( 2)
ROW( 3)

A 4-Di nensi onal

STATE(1),

STATE(1),

STATE(2) ,

STATE(2)

Array

YEAR( 1)

CoL(1) ©COL(2)
1 1
1 1
1 1

YEAR( 2)

CoL(1l) ©COL(2)
1 1
1 1
1 1

YEAR( 1)

CoL(1) ©COL(2)
1 1
1 1
1 1

YEAR( 2)

COL(1) CO(2)
1 1
1 1
1 1

Note here that the r ow, col unn, and page descriptors of var a are the default descriptors of the setsr ow, col umm, st at e,
and year . In order to replace these labels with more meaningful ones, the DEFINE REL ATION statement may be used as

shown below.

DEFI NE RELATI ON
ROWN(r ow, r ows)
COLUM\( col , coal s)
KEY( st at e, st code)
TI ME(year, yearv)

END RELATI ON

rows(i) = "This is Row " + i
cols(i) ="Colum " + i
READ st code

NY CA

162




Promula Application Development System User's Manual

READ yearv
1981 1982

After defining the relations and initializing the label variables, the WRI TE var a report is more meaningful.

A 4-Di mensi onal Array
NY, 1981

Colum 1 Colum 2

This is Row 1 1 1
This is Row 2 1 1
This is Row 3 1 1
CA, 1981
Colum 1 Colum 2
This is Row 1 1 1
This is Row 2 1 1
This is Row 3 1 1
A 4-Di mensi onal Array
NY, 1982
Columm 1 Columm 2
This is Row 1 1 1
This is Row 2 1 1
This is Row 3 1 1
CA, 1982
Colum 1 Colum 2
This is Row 1 1 1
This is Row 2 1 1
This is Row 3 1 1

Note here that the contents of the variablesr ows, col s, st code, and year v have now become the row, column, and page
descriptors of the multidimensional array var a.

Set descriptors and keys may also be specified by the READ set statement, and changed by the SELECT relation
Statement.

3.7.33 DEFINE SEGMENT

Purpose:
Defines a program segment as part of a hierarchical tree structure of segments.

Syntax:

DEFI NE SEGVENT seg ["desc"]
st at ement

ENiDI SEGVENT seg [DQ(proc)]

163




Promula Application Development System User's Manual

Remarks:
seg isthe identifier of the segment.
desc isan optional descriptor for the segment.

stat ement is any PROMULA statement including other segment definitions. Segments may be nested to any desired
level of nesting.

proc is a procedure defined within the segment. This procedure is automatically called into execution when the
segment is read into your working space.

Segments are the components into which a large program is organized in order to fit within a limited amount of working
space. The segments of a program are stored on disk. Together with array database files, program segmentation provides
the means for constructing large programs that are not limited by the size of your working space.

A segment contains both executable code and data. The data is stored in the variables of the segment. The code of the
segment stores the equations and procedures that act on the segment variables.

The END SEGMENT statement serves three purposes:
1. It marksthe end of the segment started with a previous DEFINE SEGMENT statement.

2. It writes the segment onto the disk file specified previously by an appropriate OPEN SEGMENT or DEFINE
PROGRAM statement.

3. It specifiestheidentifier of a procedure that will be executed by default when the segment isread in.

To bring a segment into your working space from disk, use the OPEN SEGMENT and READ SEGMENT statements.
This brings in both the executable code and the data values stored in the variables of the segment. If the segment you wish
to bring in is part of the currently open segment file, only aREAD SEGMENT statement is needed.

To bring only the data val ues of a segment into your working space, use the READ VAL UE segment statement.
To write to disk the data values of a segment, use the WRITE VAL UE segment statement.
Examples:

The following program skeleton

DEFI NE PROGRAM " A Segnent ed Progrant
OPEN SEGVENT "prog. xeq", STATUS=NEW
statenents of MAIN

DEFI NE SEGMVENT segl
statenents of segl

DEFI NE PROCEDURE one
statenments of one
END one
END SEGVENT segl, DQ(one)

DEFI NE SEGMVENT seg2
statenents of seg2

END SEGVENT seg2
END PROGRAM
STOP

164



Promula Application Development System User's Manual

defines a program with the following segment structure:

Main

Segl Seg2

This program is physically stored on a disk file whose file name is pr og. xeq. The program is entitled A Segnent ed
Pr ogr amand has three components: the top segment M AIN and the two segments segl and seg?2 that are subordinate to
MAIN. That is, whereas M AIN can call into execution segl and seg2, segl and seg2 cannot call into execution M AIN.
Neither can the segments segl and seg2 be in your working space simultaneously. When seg1 is in working space with
MAIN, seg2 remains on disk in the segment file pr og. xeq, and vice versa.

When seg1 isread into working space by M AIN the procedure one is automatically called into execution.

A more detailed example of program segmentation is given in Chapter 4. See also DEFINE PROGRAM, END
PROGRAM, OPEN SEGMENT, READ SEGMENT, and END SEGMENT.

3.7.34 DEFINE SET
Purpose:

Defines an enumerated set of elements.

Syntax:

DEFI NE SET [fil e]
set(n)[,"desc"][option]

END
Remarks:
file is the identifier of an array file that has been physically opened to a location on disk with the OPEN file
statement. If fi | e is specified, the set definition will become part of the array file structure.
set isthe set identifier.
n is the number of elementsin the set.
desc isadescriptor for the set.

option isused to associate information with the set elements and is one of the following:

TIME(a, b) or TIME(nt, n2, . . ., m)

Where
a is a positive number specifying the beginning point of the time series.
b is apositive number greater than a specifying the ending point of the time series.
m, n2,...,m areincreasing positive values for the time series.

165



Promula Application Development System User's Manual

The TIME option on the DEFINE SET statement is used to create time series sets. The values specified in the
TIME option define values which are set in one-to-one correspondence with the set elements. The list of values
associated with the TIME option is processed as though it were fixed length; therefore, if the values' points are
evenly spaced, they may be specified via the beginning and ending values a and b; the system will calculate the
remaining values viainterpolation.

The time values serve two very important functions.

1. They facilitate communication with program users. In the SELECT VARIABLE and ASK...ELSE
SET=set statements, the user may enter the time values to specify set elements rather than using the
element sequence numbers. Time values are also used in forming titles, subheadings, row labels, and
column labels for displays of variables subscripted by time series sets and in displays of the sets generated
by the WRITE set, BROWSE set, SELECT ENTRY, SELECT SET, and SELECT VARIABLE
statements. The time values may also be used to make set selections in the SELECT set statement and to
indicate subscript valuesin array expressions.

2. They are used in calculations involving time-series variables. Severa PROMULA statements use the
arithmetic values of the time points in performing their functions. The RATE and LEVEL statements use
the time values to interpolate time series data for each time point within a dynamic simulation, or to save
time series data at the time points during the simulation. The BROWSE and WRITE variable statements
use the time point values to calculate growth rates, percent change, and moving averages for time series
data. The REGRESS and CORRELATE statements use the time values when time series are being
analyzed as afunction of TIME.

Time series sets have a special PROMULA notation associated with them, set : V. This notation refers to the
vector of values subscripted by set which contain the time series values.

KEY (W , di skopt])

Where
w is the maximum width in characters for codes associated with the set.
di skopt isareference to a database variable that contains the code values.

The KEY option on the DEFINE SET statement is one way to specify that short keys (codes) are to be
associated with set elements.

The information supplied with the KEY option specifies the maximum width in characters of each code and,
optionally, the location of those codes on a database.

Codes may get their values from a di skopt parameter, a READ set statement, or a relation to a variable on
disk or in the program viathe SELECT RELATION or DEFINE RELATION statements.

The set element codes are used in several ways. In the ASK...ELSE, SET=set and SELECT VARIABLE
statements the user may enter the set codes to specify their selections rather than entry sequence numbers.
Another use of set codesis displays of set elements by the SELECT ENTRY, SELECT SET, WRITE set and
BROWSE set statements. The code values may also be used to make set selections in the SELECT set
statement and to indicate subscript valuesin array expressions.

ROW(W , di skopt])

Where

w is the maximum width in characters for codes associated with the set.

166



Promula Application Development System User's Manual

Examples:

di skopt isareference to a database variable that contains the code values.

The ROW option on the DEFINE SET statement is one way to specify that row labels (stubs) are to be
associated with set elements.

The information supplied with the ROW option specifies the maximum width in characters of each stub and,
optionally, the location of those stubs on a database.

Stubs may get their values from adi skopt parameter, a READ set statement, or arelation to avariable on disk
or inthe program viathe SELECT RELATION or DEFINE RELATION statements.

Set stubs are the primary labels for set elements. They are used by the BROWSE, EDIT and WRITE variable
statements to form titles, subheadings, and row labels for the various reports. They also appear in BAR and
PIECHART plots, plots of multi-dimensional variables, and in displays of sets generated by the SELECT
ENTRY, SELECT SET, WRITE set, and BROW SE set statements.

COLUMN(w, I [, di skopt])

Where
w is the maximum width in characters for column headings associated with the set.
I isthe number of linesin each column heading associated with the set.
di skopt isareference to a database variable containing the set column heading values.

The COLUMN option on the DEFINE SET statement is one way to specify that column headings (spanners)
are to be associated with set el ements.

The information supplied with the COLUMN option specifies the width in characters, the number of lines for
each spanner and, optionally, the location of those spanners on disk.

Spanners may get their values from a di skopt parameter, a READ set statement, or arelation to a variable on
disk or in the program viathe SELECT RELATION or DEFINE RELATION statements.

The set column headings are used by the BROWSE, EDIT, and WRITE statements to label the columns of
multidimensional arrays

di skopt — The DISK Suboption
As discussed above, the user has the option to specify a DISK suboption for the KEY, ROW, or COLUMN
options associated with a set definition. This suboption is used when the values to be used for the option are
located in an array file on disk. The syntax of the disk option is

DI SK(filid,varid)
Where

filid istheidentifier of anarray file.

varid istheidentifier of the vector variable whose values will be used for the stubs, spanners, or codes
for set .

Atruntime, filid isopened to the array file which contains the variable vari d that contains the values to be
used for the KEY, ROW, or COLUM N option.

167



Promula Application Development System User's Manual

DEFI NE SET
product (6) "6 products”
nonth(12) "12 Months"
END SET

The set pr oduct has six elements and is used to classify the product dimension of data. The set nont h has twelve elements
and classifies monthly data. The sets pr oduct and nont h classify arrays of data organized by product and/or by month.
For example, the statements

DEFI NE VARI ABLE
sal es(product,month) "Mnthly Sal es by Product”
nsal es( nont h) "Total Monthly Sal es”

END VARI ABLE

define two variables, sal es and nsal es. Variable sal es is a two-dimensional array that has six rows classified by the
product set, and 12 columns classified by the mont h set. Variable msal es isavector variable of 12 monthly values.

Thefi | e option of the DEFINE SET statement is used to put set definitions into the structure of an array file.

DEFI NE FI LE
fill TYPE=ARRAY
END FI LE

OPEN fil1l "array.dba" STATUS=NEW
©
DEFI NE SET fil1l
row(10) "SET ROW
col (10) "SET coL"
END SET

DEFI NE VARI ABLE fil1l
a(row, col ) TYPE=REAL(10,3) "THE A MATRI X"
b(row, col ) TYPE=REAL(10, 3) "THE B MATRI X"
END VARI ABLE
CLEAR fil1l
Given the array file definition above, the statement

CoPY fill

produces the following report.

DEFI NE FI LE
FI L1, TYPE=ARRAY
END

OPEN FI L1"FI L1. dba", STATUS=NEW

DEFI NE SET FIL1

RON(10), "SET ROW

CcOL(10), "SET ca."

END

DEFI NE VARI ABLE FI L1

A(ROW COL), TYPE=REAL(10,3), "THE A MATRI X"
B(ROW COL), TYPE=REAL(10,3), "THE B MATRI X"
END

Note that the setsr owand col areonfilefi| 1 along with the variables they subscript.

168




Promula Application Development System User's Manual

3.7.35 DEFINE SYSTEM
Purpose:

Defines a system of n equations and n unknowns for later solution, where n can be as large as you can fit in your working
space.

Syntax:

DEFI NE SYSTEM sys
DEFI NE PARAMETER

x1[, "descl"]

x2[, "desc2"]

th,"descWﬂ

END

eqgnl

eqgn2

eqnN

END [ sys]
Remarks:

sys isthe system identifier.

x1 isthe identifier of the 1st unknown.
X2 isthe identifier of the 2nd unknown.
xN isthe identifier of the Nth unknown.

descl isadescriptor for the 1st unknown.
desc2 isadescriptor for the 2nd unknown.
eqnl isthe 1st equation of the system.
eqn2  isthe 2nd equation of the system.
equN isthe Nth equation of the system.
Equations are written in the usual algebraic notation:
f(x1,x2,...) =9(x1,x2,...)
wheref () and g() arearbitrary real, continuous functions of x1, x2,...

A system sys with parameters x1, x2,... may be solved by simply entering its name and specifying an ordered list of
scalar variablesal, a2,... containing guesses for the unknowns.

sys(al, a2,...)

The number and order of variablesin the variable list must agree with the number and order of the parameters as defined in
systemsys.

169



Promula Application Development System User's Manual

The solution of a system is obtained by an iterative process base. If it exists, the solution of system sys, will be returned as
the values of the variablesal, a2,.... If the attempt to solve system sys does not converge after a reasonable number of
iterations, then an error message is displayed and you may try another starting guess for the unknowns. A diagnostic is also
given if the system does not have areal solution.

Examples:
The following program demonstrates how to define and solve a system of 3 equations and 3 unknowns.

Define a system of 3 equations with 3 unknowns.

DEFI NE SYSTEM sys1
DEFI NE PARANVETER
x, "1st unknown"
y, "2nd unknown"
z, "3rd unknown"

END

1*x + y*y = 1/z

x*y - ylz = -8

b*z - x*1 =y - 2
END sys1

Make an initial guess for the solution of systemsys1 and solve.

DEFI NE VARI ABLE

al " 1st Unknown" TYPE=REAL( 10, 5)
a2 " 2nd Unknown" TYPE=REAL( 10, 5)
a3 " 3rd Unknown" TYPE=REAL( 10, 5)

END VARI ABLE

al =1

a2 =1

a3 =1

sysl(al, a2, al3)

Write the solution values for system sys1.

WRI TE al

1st Unknown -5. 00000
WRI TE a2

2nd Unknown 2. 00000
WRI TE a3

3rd Unknown -1.00000

Procedure sol v1 solves system sys1 and displays the solutions repeatedly by trying different initial guesses.

DEFI NE VARI ABLE
iter "lteration Counter"
END VARI ABLE

DEFI NE PROCEDURE sol v1
WRI TE "Enter 3 values as your initial guess for the solution of 'sysl'"
READ (al, a2, a3)
iter =1
DO WHI LE iter LE 3
sysl(al, a2, al3)
WRI TE(/, "A solution for 'sysl' is:")
WRI TE al
WRI TE a2

170



Promula Application Development System User's Manual

WRI TE a3

al al+l

a2 a2+1

a3 a3+1

iter = iter+l
END WHI LE

END sol vl

Running the sol v1 procedure produced the following dialog.

sol vl

Enter 3 val ues as your

111

A solution for 'sysl'

1st Unknown -5. 00000
2nd Unknown 2. 00000
3rd Unknown -1.00000

A solution for 'sysl'

1st Unknown 1.00000
2nd Unknown 2. 00000
3rd Unknown 0. 20000

A solution for 'sysl'

1st Unknown -5. 00000
2nd Unknown 2. 00000
3rd Unknown -1.00000

initial guess for the solution of

'sysl'

3.7.36 DEFINE TABLE

Purpose:

Defines a multi-variable tabular report for the program.

Syntax:

DEFI NE TABLE
tabl (sets) [, TITLE(text)][, FORMAT(rw, cw)],

BODY(["text1",] varl[fntl] [,"text2",] var2[fm2],...)
ENb”

Remarks:

t abl isthe identifier of the table.

sets isalist of the identifiers of the sets dimensioning the variables in the table. Upon display, the descriptors of
the first set become the column headings of the table; the descriptors of the other sets, if any, classify the
pages of the table. The descriptors of al sets missing from the list become the row descriptors of the table.
Thislist must contain at least one set.

t ext isany text you wish to show as atitle for the table. The title may include variables and other format characters
according to the rules defined in the WRITE text statement.

textl

isany text that you wish to use as a subtitle for the values of var 1. Thistext may not contain variables.

171




Promula Application Development System User's Manual

varl isthe identifier of the first variable in the table.

fntl is the desired format for the values of var 1. Usually, this is used to specify the number of decimal digits for
var 1.

text2 isany text that you wish to use as a subtitle for the values of var 2. Thistext may not contain variables.

var 2 isthe identifier of the second variable in the table.

fnt2 isthe desired format for the values of var 2.

rw isthe width in characters for row descriptors.

cw is the width in characters for table columns.

A table definition includes a structure specification, in terms of sets, a body, and an optional title and format. The body of
the table contains the names of the variables whose values will be displayed as the 'body’ of the table. Y ou may include as
many variables as you wish in the body of atable. The format specifies the width of the row descriptors and columns of the
table.

Typically, the values of the variablesin atable are classified by a common set which will classify the columns of the table.
To define atable of scalars, let set s equal 1.

To display atable, use the table's identifier as a program statement.

By default, tables defined by the DEFINE TABL E statement are written to the output device (screen, or printer) when they
are called (i.e., they behave like a WRITE table statement.) You may override this default and use the same table for
interactive data browsing or data entry by executing a SELECT BROW SE statement. See the SELECT option statement
for details.

Tables may be writtenin adisk file by usinga SELECT OUTPUT statement.

The title defined for a table may be locally overridden with a custom title by including a title specification with the call to
the table. For example, when displaying atable caled t abl , the statement

tabl TI TLE(newt ext)
will display t abl with the title specified by newt ext instead of the title specified in the definition of t abl .
Examples:
The following example illustrates use of the DEFINE TABLE statement.

First, agroup of financia variables and several other variables that will be used to construct a financial summary report are
defined and initialized. The data for the financia variables were obtained from a database (not shown). See the
FPLAN.PRM example on the PROMULA Demo Disk for details.

DEFI NE SET
col (13)
END SET
DEFI NE VARI ABLE
*

* TABLE DATA VARI ABLES

172



Promula Application Development System User's Manual

netsal (col) "Net Sal es"

enpcos(col) "Enpl oynment Costs"

nmsrvce(col) "Materials and Service"

dep(col) " Depreci ati on"

taxes(col) "lncome Taxes"

tcosts(col) "Total Costs"

opinc(col) "Operating |Incone"

intinc(col) "Interest, Dividends and O her | ncone"
intexp(col) "Interest and O her Debt Charges”
clcost(col) "Estimated Plant C osedown Costs"
ot hexp(col) "O her Expenses”

ibtax(col) "Inconme (Loss) Before Incone Taxes"
itax(col) "I ncone Taxes"

netinc(col) "Net Incone (Loss)"

* TABLE SUPPORT VARI ABLES

cdesc(col) "The Col um Descriptions”
subl(col)
dash(col ) TYPE=STRI NG 10)
eql s(col) TYPE=STRI NG 10)
END VARI ABLE

SELECT KEY(col, cdesc)
dash=" -------- "
eql s=" —=—======
cdesc(i)=1977+i

cdesc(11)="1978- 82"
cdesc(12)="1983-87"
cdesc(13)="1978-87"

DEFI NE TABLE
report(col),
FORMAT( 40, 10),
TI TLE(" ACVE Cor por ation"/,
"Ten- Year Financial Summary"/,
"(Mllion Dollars)"/),
BODY(eqls / netsal /,
"Costs and Expenses:",
enpcos nervce dep taxes dash subl dash opinc/,
"t her Inconme (Expense):",

TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)
TYPE=REAL( 8, 1)

TYPE=STRI N 7)

The code below defines atable called r epor t and a procedure that computes and displays the table.

intinc intexp clcost othexp dash ibtax itax dash netinc eqls)

END TABLE

DEFI NE PROCEDURE wr r ep
SELECT col (11-13)
subl=enpcos+nsrvce+dep+t axes

SELECT LI NES=60, ZERO=DASHES, HEADI NG=OFF, COVWA=0N, M NUS=PARENTHESES

report
SELECT col *

SELECT LI NES=25, ZERO=0ON, HEADI NG=CON, COMVA=CFF, M NUS=LEADI NG

END PROCEDURE wrrep

The report produced by running procedure wr r ep is shown below.

ACME Cor poration

Ten- Year Financial Summary

173




Promula Application Development System User's Manual

(MIlion Dollars)

1978-82 1983-87 1978-87

Net Sal es 18,334.7 28,795.2 47,129.9
Costs and Expenses:

Enpl oynent Costs 7,864.1 12,208.4 20,072.5
Material s and Service 7,740.1 13,476.9 21,217.0
Depreci ation 902.1 1,483.1 2,385.2
I ncome Taxes 298. 6 371.7 670. 3

Operating | ncome 1, 529.8 1,255.1 2,784.9
O her I ncome (Expense):

Interest, Dividends and O her Incomne 195.9 276. 4 472. 3
Interest and O her Debt Charges (199. 0) (389.0) (588.0)
Esti mated Pl ant C osedown Costs -- (650. 0) (650. 0)
O her Expenses -- (51.0) (51.0)
I ncone (Loss) Before Incone Taxes 1,526.7 441.5 1, 968.2
I ncone Taxes 630. 8 (86.2) 544. 6
Net Income (Loss) 895.9 527.7 1,423.6

Seethe WRITE table, BROWSE table, and EDIT table statements for more details on the use of multi-variable reports.

3.7.37 DEFINE VARIABLE

Purpose:

Defines alocal variable.

Syntax

DEFI NE VARI ABLE [ SCRATCH] [fil e]
var[(sets)][,"desc"][, TYPE=type] [values] [diskrel]
ENiDI .
Remarks:

var isthe identifier of the variable. Thisisthe name by which you refer to the variable in your programs. var may
contain letters and numbers, but the first character must be a letter. Each variable identifier must be different
from al other identifiers in a given program segment. Only the first six characters of the identifier are
significant. If the identifier is followed by an asterisk (*), the variable may be used as an indirect for general
purpose input/output operations.

SCRATCH  isakeyword indicating that the variable isto reside in scratch storage.

174




Promula Application Development System User's Manual

file

sets

desc

type

isthe identifier of an arrray or random file. If fi | e is specified, var will be treated as a disk variable and its
values will be contained inthe disk filethat f i | e is physically opened to. Seethe SELECT file statement for
adiscussion of random files, and Chapter 4 for a discussion of array files.

NOTE: Iffil e isspecified, the SCRATCH, val ues, and di skr el optionsare not allowed.

is a list of set identifiers or numeric constants specifying the dimensions of the variable. If omitted, the
variableisascalar, i.e, it hasasingle value.

In default input and output operations, the first set will classify the rows of values, the second set will classify
the columns of values, the third set will clasify the two-dimensional blocks of values, etc.

is a descriptor for the variable. It shows up as the title of subsequent displays of the variable produced by the
report generation statements WRITE, BROWSE, EDIT, PLOT.

isthe type format specification of the variable and may be one of the following:
REAL (w,d) contains real numbersin the ranges:
(-3.37E+38,-8.43E-37)
(()+8.43E—37,+3.37E+38)

Reals outside these ranges are not valid and cause underflows or overflows in
calculations, which result in errors.

INTEGER(W) contains integer numbers in the range:

(-231-3,+231-3) about + 2.1 hillion

Integers outside this range cause overflows and cannot be processed by the system.
STRING(w) contains character values, i.e., strings of characters.

CODE(w) contains codes. Codes are short character strings that are used for set selections. For
example, JAN and FEB may be used to select the months of January and February.

MONEY (w) contains money values (dollars and cents). This type is useful for accounting arithmetic
where one-cent accuracy is important. Money variables maintain ten significant digits
of accuracy. Therange of MONEY type variablesis

(-2**31-3,+2**31-3)
about + 2.1 billion cents or 21 million dollars.

DATE(W) contains date values. Dates are values of the form nm dd/ yy, where nmis a month
number, dd is a day number, and yy is a year number. Internaly, the date value is
stored as a numeric quantity equal to yymmdd. Alternative date formats (e.g.,
dd/ mml yy or mmi dd/ yyyy) are available by executing a SELECT DATE statement.

UPPERCASE(w) contains string values that are automatically converted to uppercase when they are input
from the keyboard.

175



Promula Application Development System User's Manual

val ues

di skrel

set(w) contains integers from 0 to N. If the values of the set type variable are within the range
of set, the descriptors of set are displayed, otherwise, the variable is assigned and
displays the value 0. This type of variable is useful for helping the user enter or verify
categorical data.

Where

w is an integer denoting the width (in characters) of subsequent displays of the values of var. The
maximum width for a code type variableis 6 characters.

d isaninteger denoting the number of decimal digits in subsequent displays of the values of real variables.
If d is 10 or greater, the number will be shown in exponential notation — base 10. The value will show
six decimal places.

If t ype isomitted, the variable will have type REAL (8,0)

is a value specification defining initial values for var . Use of this option is restricted to local, REAL type
variables. val ues may take one of four different forms:

VALUE(a) or assignsthe value a to all the cells of the variable.

VALUE=a

VALUE(a, b) assigns the first value to a, the last value to b, and interpolates the remaining cells of
the variable.

VALUE(a, b,c...) assigns the values a, b, c... in order. If too many values are specified, the extra

values are ignored. If too few are specified, the remaining values are set to zero. In
order to simplify the specification of multiple values, the N* VALUE notation may be
used. Thus,

VALUE(50*99.9, 30*99.0, 10*95.0, 5*90.0, 5*80.0)
would be a quick way to specify 100 values.

If val ues is omitted, the variable will be initialized by PROMULA: numeric variables are initialized with
the value zero, and string type variables are initialized with "empty strings".

isadisk relation indicating that the variable isto be used for virtual or dynamic access of adisk variable.

Variables are storage places for information. Depending on how their values are stored, variables are of three types: fixed,
scratch, and disk.

Fixed

Scratch

Fixed variables are accessed from afixed space in primary memory (RAM). They are defined with a DEFINE
VARIABLE statement.

The values of fixed variables may be saved in a segment file on disk by the END SEGMENT, END
PROGRAM, and WRITE VAL UE segment statements.

Using fixed variablesin calculations will result in the fastest execution speed.
Fixed variables are sometimes referred to aslocal variables.

Scratch variables are accessed from a scratch space in primary memory. They are defined with a DEFINE
VARIABLE SCRATCH statement.

176



Promula Application Development System User's Manual

Their values can be cleared from memory with a CLEAR statement to make room for other scratch variables.
The values of scratch variables cannot be saved in a segment file on disk.

Computations using scratch variables will be slower than using fixed variables because PROMULA must do
more internal calculations to access their values.

Scratch variables are sometimes referred to as local variables.

Disk Disk variables are stored on disk in an array file. They are defined with a DEFINE VARIABLE file
statement. Disk variables are also referred to as database variables.

The values of disk variables may be accessed directly on disk and they may be accessed dynamically or
virtually in memory via scratch or fixed variables which are related to them.

See Chapter 4 for adiscussion of relating local and disk variables.

Example: The set typevariable

When displayed, a set(w) type variable will show the contents of the set element whose index value it contains. This
correspondence is only valid for index values between 1 and the size of the set, all other values are converted to 0. The
following exampleillustrates the TY PE=set(w) option.

DEFI NE SET

enp(4)
END SET

DEFI NE VARI ABLE
enmpn(enp) "Enmpl oyee Nanes" TYPE=STRI NG 10)
enmps(enp) "Enpl oyee List" TYPE=enp(40)
enpc "An Enpl oyee" TYPE=enp( 10)
END VARI ABLE

DEFI NE RELATI ON

r ow( emp, enpn)
END RELATI ON

READ enpn
Ceor ge
Fred

Lois

Mar k

Given the above defintions, the set type variable may be used for displaying categorical data as illustrated in the dialog
below.

WRI TE enps
Enpl oyee Li st
Ceor ge 0
Fred 0
Loi s 0
Mar k 0
emps(i) =i
WRI TE enps
Enpl oyee Li st
Ceor ge Ceor ge
Fred Fred

177




Promula Application Development System User's Manual

Loi s Loi s
Mar k Mar k
WRI TE enpc
An Enpl oyee 0
enpc = 4
WRI TE enpc
An Enpl oyee Mar k

3.7.38 DEFINE WINDOW
Purpose:
Define a window.

Syntax:

DEFI NE W NDOW
name(areal[,text] [, border][,bar]) [POPUP]

END
Remarks:
name isthe logical identifier of the window.
area isalist of four numbers defining the location and size of the window. The syntax of thislist is
X1, Y1, X2, Y2
where
X1 defines the leftmost column of the window
Y1 defines the topmost row of the window
X2 defines the rightmost column of the window
Y2 defines the bottom-most row of the window

For a 25 row by 80 column text screen, row values must be in the range 0 to 24 and column values must be in
the range 0 to 79. Any window area that is off the screen or is overlapped by another window will not be
visible.

t ext isalist of up to four keywords separated by slashes that define the appearance of normal text in the window.
The syntax of thislistis

f oregr/ backgr [/ BRI GHT] [ / BLI NK]

where

foregr defines the foreground color
backgr defines the background color

BRI GHT causes the foreground to be bright
BLI NK causes the text to blink

178




Promula Application Development System User's Manual

bor der

bar

Valid colors are BLACK, WHITE, GREEN, RED, YELLOW, BLUE/CYAN, PURPLE/MAGENTA,
NAVY/DARK BLUE.

isalist of up to six keywords separated by slashes that define the appearance of a border for the window. The
syntax of thislistis

type/ styl e/ foregr/backgr[/ BRI GHT] [ / BLI NK]
where
type defines the location of aborder for the window and may be one of the following:

NONE for no border

TOP for atop border

BOTTOM for abottom border
BANDED for atop and bottom border
FULL for a complete border
HEADER for a header border
FOOTER for afooter border

style defines the style of the border and may be one of the following:
SINGLE  for asingleline border

DOUBLE for adouble line border
HEAVY for a heavy line border

foregr defines the foreground color
backgr defines the background color

BRI GHT causes the foreground to be bright
BLI NK causes the text to blink

Valid colors are BLACK, WHITE, GREEN, RED, YELLOW, BLUE/CYAN, PURPLE/MAGENTA,
NAVY/DARK BLUE.

The border is displayed one character outside of the area defined by the ar ea parameter of the window
definition.

is a list of up to three sets of up to four keywords separated by slashes that define the appearance of
highlighting in highlighted prompts, pick and popup menus, EDIT statements, and the list selection
statements SELECT indirect, SELECT ENTRY, and SELECT SET, and the GETDIR function.
The syntax of the bar specificationis
col orsl, col ors2, col ors3
where
colorsl  definesthe colors of standard highlighting in the window.
These colors will be used for highlighting and prompts generated by various PROMULA
statements and for the currently highlighted but not selected elements in selection lists. The

default colors are black on cyan.

colors2  defines the colors of a selected but not currently highlighted element in the SELECT SET
statement. The default colors are black on green.

179



Promula Application Development System User's Manual

colors3  defines the colors of a currently highlighted and selected element in the SELECT SET
statement. The default colors are black on red.

Each color specification has the following form:

f oregr/ backgr[/ BRI GHT] [ / BLI NK]

where

foregr defines the foreground color
backgr defines the background color

BRI GHT causes the foreground to be bright
BLI NK causes the text to blink

Valid colors are BLACK, WHITE, GREEN, RED, YELLOW, BLUE/CYAN, PURPLE/MAGENTA,
NAVY/DARK BLUE.

POPUP is the optional keyword POPUP. When present, the window will behave as a " popup" window; i.e., when the
window is closed, the contents of the screen that was on the screen in the window area before the popup
window was opened will be redrawn. Popup windows are often used to provide on-line help or warning

messages.
Examples:

The following example illustrates how to use header and footer style windows. A static "frame" window is needed to make
the sides of the box that will contain the Main Screen. This frame will be opened first, then the static header and footer
windows will be opened on top of it. Finally, the window to be used as the Main Screen that fitsinside the "box" created by
the first three windows is opened.

DEFI NE W NDOW
head(01, 01, 78, 03, WHl TE/ BLACK, HEADER/ S| NGLE)
fran(01, 01, 78, 24, WH TE/ BLACK, FULL/ S| NGLE)

f oot (01, 23, 78, 23, WH TE/ BLACK, FOOTER/ SI NGLE)
wor k( 02, 05, 77, 21, WH TE/ BLACK, NONE)

END W NDOW

OPEN fram MAI N

OPEN head MAIN

WRI TE CENTER(/"This WRI TE statenent appears in the w ndow called 'head ")
OPEN foot MAIN

WRI TE CENTER(/"This WRI TE statenent appears in the wi ndow called 'foot'")
OPEN wor k MAIN

WRI TE CENTER(/"This WRI TE statenent appears in the w ndow called 'work'")
ASK CONTI NUE

The code above produces the following display:

180



Promula Application Development System User's Manual

This WRI TE statement appears in the w ndow called 'head'

This WRI TE statement appears in the w ndow called 'work'

Press any key to continue

This WRITE statement appears in the w ndow called 'foot'

See also the OPEN WINDOW and CLEAR WINDOW statements as well as Advanced Windows in Chapter 1 for more
information on the use of windows. See also the sample applications distributed on the PROMULA Demo Disk.

3.7.39 DO CORRELATE
Purpose:

Produces a report of one or more correlation matrices for all pairings of specified variables. The corrélation coefficients (R)
are computed by the following formula:

2ixi—X)yi—y)

) :\/ 2i(x —7)2\/ ilyi—y )2

where Xj and Yj are the variablesto be correlated and X and 7 are their respective means.

Syntax:
DO CORRELATE [ (sets)] (vars)

Remarks:

sets isalist of set identifiers subscripting the arrays to be correlated.
The specification of set s defines the index of the observations and the order of report pages produced. The last
set in set s specifies the index of the observations to be correlated, any preceding sets specify the order in which

pages of the report are displayed. The generation of report pages corresponds to the specification of the sets in
set s from left to right — left varying the fastest.

181



Promula Application Development System User's Manual

vars

The default value for set s is the reverse of the set specification used in defining the highest dimensional variable
(i.e., the variable having the greatest number of dimensions) in var s with the first set in this definition indexing
the observations, and the remaining sets heading report pages.

isalist of variable identifiers specifying the arrays to be correlated. The list may also contain the time parameter
TIME if all the variablesin var s share atime series set as one of their indexes (atime series set is a set which has
aTIME specification in its definition or which shares a TIME relation with a variable.) This list must contain at
least two variables. Inclusion of TIME will include the time series value vector as one of the variables in the
correlation matrix.

One-dimensional arrays (vectors), are used in correlation calculations directly. Two- and higher-dimensional
arrays are partitioned into sets of observations, and a separate matrix is generated for each active "page" and
"column" of the highest dimensiona array invar s. The variables specified in var s should have at least one set in
common.

A title — Correlation Matrix — is printed at the top of each page. Subtitles including the row descriptors for sets
specified in set s appear when more than one report page is generated.

Examples:

The following code illustrates the DO CORREL ATE statement.

DEFI NE SET

grp(2) "Test G oups”

tim(10) "Tine Points" TIMEO,9)
END SET

DEFI NE VARI ABLE
rspv(timagrp) "Response by G oup and Tine"
dosv(timgrp) "Dose at Each Tine Point"
END VARI ABLE

READ dosv(grp,tim

0.5 1.0 1.5 2.0 2.5 15.0 17.5 20.0 22.5 25.0
0.5 1.0 1.5 2.0 2.5 15.0 17.5 20.0 22.5 25.0
READ rspv(grp,tim

1.3 2.1 3.5 6.0 6.6 6.1 6.0 11.2 5.7 5.7
0.3 1.9 3.6 6.2 53 3.3 2.7 10.7 55 97

Given the definitions above, the statement

DO CORRELATE(grp,tim (dosv,rspv, Tl ME)

produces the display below.

Correlation Matrix, 0 to 9

GRP( 1)

DOSV RSPV TIME

DOSV 1.000 0.581 0.948

RSPV 0.581 1.000 0.687

TI ME 0.948 0.687 1.000
GRP(2)

DOSV RSPV TI ME

182




Promula Application Development System User's Manual

DOsV 1. 000 0. 603 0.948
RSPV 0. 603 1. 000 0.738
TI ME 0.948 0.738 1. 000

3.7.40

DO DESCRIBE

Purpose:

Produces areport of one or more tables of 12 descriptive statistics for specified variables. The statistics are as follows:

Syntax:

1. Number of observations 7 Standard deviation
2. Number of excluded observations 8 Skewness

3. Number of valid observations 9. Kurtosis

4. Arithmetic mean 10. Range

5. Variance 11 Minimum value, and
6. Standard error 12 Maximum value.

DO DESCRI BE [(sets)] (vars[::fmt])

Remarks:

sets

vars

fmt

isalist of set identifiers subscripting the array(s) to be described.

The specification of set s controls the analysis of the variables specified in var s by defining the index of the
observations and the order of report pages produced. The last set in set s specifies the index of the observations,
any preceding sets specify the order in which pages of the report are written. The ordering of report pages
corresponds to the specification of the setsin set s from left to right — left varying the fastest.

The default value for set s is the reverse of the set specification used in defining each variable in var s with the
first set in this definition indexing the observations, and the remaining sets heading report pages.

isalist of variable identifiers specifying the arrays to be described.

One-dimensional arrays (vectors), are treated as a single set of observations. Two- and higher-dimensional arrays
are partitioned into sets of observations.

is an integer specifying the number of decimal digits for the reported statistics. The default f nt is the number of

decimals specified by the TYPE specification in the definition of the variable(s) specified in vars. The report
generator uses the following number of decimal digits for each statistic:

Format of reports produced by the DO DESCRIBE statement

STATISTIC NUMBER OF
DECIMALSDIGITS

1. Number of observations 0

2. Number of excluded observations 0

3.  Number of valid observations 0

4. Arithmetic mean fm

5. Variance ft

6. Standard error ft+l

7. Standard deviation ft+l

183




Promula Application Development System User's Manual

8. Skewness fnt+2
9. Kurtosis fnt+2
10. Range ft
11. Minimum value fmt
12. Maximum value fmt

A title — Descriptive Statistics for var desc — is printed at the top of each page (var desc is the descriptor of the array
being described). Subtitles that consist of the row descriptors for sets specified in set s appear when more than one report
pageis produced.

Examples:

The following code illustrates the DO DESCRIBE statement. First, a three-dimensional variable, a, is defined and
displayed:

DEFI NE SET

row( 4)
col (2)

pag(2)
END SET
DEFI NE VARI ABLE

a(row, col , pag) "VALUES BY ROWN AND COL"
END VARI ABLE

a=RANDOM 5000, 9999)

The values of variable a may be displayed by the statement, WRI TE a.

VALUES BY ROW AND COL

PAG( 1)
COL(1) COL(2)
ROW( 1) 6,079 6,825
ROW( 2) 8,046 5,052
ROW( 3) 8,567 8,882
RON( 4) 8,988 7,825
PAG 2)
COL(1) ©OL(2)
ROW( 1) 7,007 6, 409
ROW( 2) 6,613 7,083
ROW( 3) 6,611 9,819
RON( 4) 5,152 5,168

The report produced by the statement

DO DESCRI BE(col ,row) (a::2)

isshown below. Setrowisthelast setinsets so it indexes the observations, set col is used to partition the data for each
table. Set pag is not specified in set s so its descriptors do not appear in the titles of the tables and the statistics reported
correspond to the first level of pag.

Descriptive Statistics for VALUES BY RON AND COL

184




Promula Application Development System User's Manual

COL(1)
No of Cbservations 4
Nunber Excl uded 0
Val i d Cbservations 4
Arithnetic Mean 7,919.92
Vari ance 1, 241, 510. 00
St andard Error 1, 286. 603
St andard Devi ati on 1, 114. 231
Skewness -0. 8583
Kurtosi s -0.8961
Total Range 2,909. 62
M ni mum Val ue 6,078.70
Maxi mum Val ue 8, 988. 32

Descriptive Statistics for VALUES BY ROW AND COL

COL(2)
No of Cbservations 4
Nunber Excl uded 0
Val i d Cbservations 4
Arithnetic Mean 7,146. 30
Vari ance 1, 990, 345. 00
St andard Error 1, 629. 047
St andard Devi ati on 1, 410. 796
Skewness -0. 3267
Kurtosi s -1.1999
Total Range 3, 935. 86
M ni mrum Val ue 5, 052. 46
Maxi mum Val ue 8, 988. 32

The statement DO DESCRI BE( a: : 2) would use the default value for sets (i.e, (pag, col , row)) and would produce
tables of statistics for variable a indexed by r owfor al combinations of pag and col in the following order:

PAG(1), COL(1)
PAG(2), COL(1)
PAG( 1), COL(2)
PAG(2), COL(2)

The statement DO DESCRI BE(r ow) (a: :2) would produce atable of statistics for variable a indexed by r ow for the first
active elements of sets of pag and col . No pag or col descriptor subtitle would appear in the report title.

The statement DO DESCRI BE(col , row) (a::2) would produce atable of statistics for variable a indexed by r ow for
each level of set col and the first active element of set pag. Set col 's row descriptors would be used as a subtitle in the
report titles.

CaL(1)
CoL(2)

The statement DO DESCRI BE( col , pag, row) (a::2) would produce tables of statistics for variable a indexed by r ow
for all combinations of pag and col in the following order:

COL(1), PAG1)
COL(2), PAGE1)
COL(1), PACF 2)
COL(2), PAE2)

185




Promula Application Development System User's Manual

3.7.41 DO DIRECTORY
Purpose:

Executes a group of statements once for each file in the current directory that matches a given file specification.

Syntax:

DO DI RECTORY fil espec I NTO f name
st at ement

ENiDI .
Remarks:

fil espec isastring variable or a quoted string containing the file specification that you wish to search for; wild card
characters are allowed.

f name isthe name of the string variable that will be assigned each file name that matches the file specification.
st at ement isany executable statement, including other DO statements, except definitions.

The statements from DO DIRECTORY st at enent isan example of a"DO loop."

Examples:

The following example demonstrates the DO DIRECTORY statement.

* Create three files on disk

DEFI NE FI LE

filel

file2

file3

END
OPEN filel "filel.fil"™ STATUS = NEW
OPEN file2 "file2.fil" STATUS = NEW
OPEN file3 "file3.fil" STATUS = NEW
CLEAR filel
CLEAR file2
CLEAR file3

DEFI NE VARI ABLE
f nane "File Name" TYPE=STRI NG 15)
END VARI ABLE

The DO DIRECTORY loop below finds all files that match the specification *. fi | , passes each one to the string variable
f nane, and writes the value of f nane.

DO DI RECTORY "*.fil" INTO fnane

WRI TE f nanme
END DO DI RECTORY

The output of the loop above was

Fil e Nane FILEL FIL
File Name FILE2. FIL
File Name FI LES. FI L

186




Promula Application Development System User's Manual

3.7.42 DO file
Purpose:

Accesses sequentially all the records of atext file or arandom file.

Syntax:

DO file
st at emrent

ENiD. .
Remarks:
file istheidentifier of atext or random file.
st at ement isany executable statement, including other DO statements, except definitions.

The statements from DO file to END are an example of a"DO loop."

The statements of the DO file loop are executed repeatedly as many times as there are records in the file. The order of
iterations through the DO loop is 1,2,...N, where N is the number of the last record in the file. At each iteration a new

record in the file is accessed, and the statements within the DO loop are executed.

If fileistype TEXT, an explicit READ file(variables) statement is required to transfer data from the text file to program
variables. If fileistype RANDOM, the datain the record is automatically passed to the variables of the random file as each

record is accessed.

Examples:

1. Copy atext fileto arandom file

DEFI NE FI LE
txt1l TYPE=TEXT
ranl TYPE=RANDOM
arrl TYPE=ARRAY
END FI LE

OPEN ranl "ranl.ran", STATUS=NEW
DEFI NE VARI ABLE ranl
itenl "ltem 1" TYPE=REAL( 8, 0)
iten2 "ltem 2" TYPE=STRI N& 8)
itenB "ltem 3" TYPE=DATE( 8)
END VARI ABLE

OPEN txt1l "txtl.txt", STATUS=OLD
DO txt1l
READ txt 1(itenil: 8,itenR: 8,itenB: 8)
WRI TE ranl
END txt1

2. Copy atext fileto an array file

OPEN arrl "arrl.arr", STATUS=NEW

DEFI NE SET
rec(100) "Records"

187



Promula Application Development System User's Manual

END SET

DEFI NE VARI ABLE arr1
varl(rec) "Variable 1" TYPE=REAL( 8, 0)
var2(rec) "Variable 2" TYPE=STRI NE 8)
var3(rec) "Variable 3" TYPE=DATE( 8)

END VARI ABLE

DEFI NE VARI ABLE
rn "Record Nunber"
END VARI ABLE

rn=1

DO txt1l
READ t xt 1(var1(rn),var2(rn),var3(rn))
rn=rn+l

END txt 1

3. Copy arandomfileto an array file

rn=1

DO ranl
varl(rn) = itenl
var2(rn) = itenR
var3(rn) = itenB
rn=rn+l

END ranl

4. Copy an array fileto arandom file

rn =1

DO rec
SELECT ranl(rn)
itenml = varl
iten2 = var2
itenB = var3
WRI TE ranl
rn=rn+l

END rec

5. Listarandomfile

DO ranl
WRI TE(iteml: 8,itenR: 8,itenB: 8)
END ranl

3.743 DO IF

Purpose:
Executes a group of statements once if a condition is met.

Syntax:

DO I F condition
st at enment

[ ELSE [ condition]
st at enent

o]

END

188



Promula Application Development System User's Manual

Remarks:

condi ti on isany Boolean expression, i.e., an expression that is either true or false. If true, the statements immediately
following are executed until the next END or EL SE statement, whichever is first. If false, the statements
immediately following are not executed and execution proceeds to the next ELSE or END statement,
whichever isfirst.

stat ement is any executable statement (no definitions), including another DO statement. The group of executable
statements between the DO |F and the next ELSE (or END) statement, or between an EL SE and the next
EL SE (or END) statement, is called a branch of the DO | F statement.

A branch is executed only if al previous conditions are false and the condition of the branch is true; otherwise, execution
proceeds to the evaluation of the condition of the next branch.

DO IF statements may be nested to any depth.

DO IF statements may have multiple EL SE statements. In a DO |F with multiple EL SE statements, the conditions of the
EL SE statements are evaluated sequentially from top to bottom: if the first condition is false the second condition is
evaluated, and so forth, until atrue condition isfound or the END is encountered.

If an EL SE statement has no condition specified, it is assumed to be the complement of all previous conditions. That is, if
all the previous conditions are false, the null EL SE statement is true. For this reason, a null EL SE statement, if desired,
should always be specified last.

Examples:

DEFI NE VARI ABLE
X

y
END VARI ABLE

DEFI NE PROCEDURE doi f
DOIF x GT'y
WRI TE("x= ",x:5:2,", y= ",y:5:2/"x is greater than y")
ELSE x EQy
WRI TE("x= ",x:5:2,", y= ",y:5:2/"x is equal to y")
ELSE
WRI TE("x= ",x:5:2,", y= ",y:5:2/"x is less than y")
END I F
END PROCEDURE doi f

A dialog with procedure doi f is displayed below.

X 1.2

y 3.4

doi f

x= 1.20, y= 3.40
X is less than y

X = 4.5

doi f

x= 4.50, y= 3.40
X is greater than y

x = 3.4

doi f

x= 3.40, y= 3.40
X is equal toy

189




Promula Application Development System User's Manual

In this example, the procedure doi f checks whether the variable x is less than, equal to, or greater than the variabley, and
issues a message appropriately.

3.7.44 DO IF END

Purpose:
Executes a group of statements once if the user presses the END key in response to a prompt or pick menu.

Syntax:

DO I F END
st at ement

ENiD. .
Remarks:
st at ement isany executable statement (no definitions), including another DO statement.

The group of executable statements between the DO |F END and the END statement are executed if the user presses the
END key in response to a prompt or menu, typically from a SELECT SET, SELECT ENTRY, SELECT indirect,
SELECT variable or SELECT menu statement that uses the End key as an escape. This test can help you avoid
complications that may come up when the user ends from a selection statement without making a valid selection. After
these statements are executed, PROMULA automatically re-executes the statement preceding the DO |F END block.

Examples:

1. The procedure below usesa DO IF END statement to force the user to make a set selection viathe SELECT ENTRY
Statement.

DEFI NE SET

yrs(s)
END SET

DEFI NE W NDOW
cwi nd( 1, 22, 78, 23, whi t e/ bl ack/ bri ght, full/singl e, yel |l ow bl ack), POPUP
mn nd( 0, 0, 79, 20, gr een/ bl ack, none, whi t e/ bl ack, yel | ow/ red/ bri ght)

END W NDOW

DEFI NE VARI ABLE
yrsn(yrs) "Year Nanes" TYPE=STRI NG 10)
yrsv(yrs) "Year Val ues"”

END VARI ABLE

yrsv(i) =i
yrsn(i) = yrsv+" yrs."
SELECT ROAyrs, yrsn)

DEFI NE PROCEDURE getyrs
OPEN cwi nd, COMVENT
OPEN mwi nd, MAIN
VWRI TE COMVENT
Pl ease sel ect the nunmber of years you will serve.
YOU MUST SERVE AT LEAST 1 YEAR!

190



Promula Application Development System User's Manual

END

SELECT ENTRY(yrs)

DO | F END

getyrs

END | F END

yrsv = yrs:S

WRI TE ("Your nust serve ",yrsv:-2,"years! THANK YOU ")
END PROCEDURE getyrs

Identifier Description

1 1 yrs.
2 2 yrs.
3 3 yrs.
4 4 yrs.
5 5 yrs.

End: Exit Arrows PgUp PgDn Hone: Move Enter: Select

Pl ease sel ect the number of years you will serve.
YOU MUST SERVE AT LEAST 1 YEAR

2. TheDO IF END statement may also be used to detect a null set selection. This usage is obsolete; it is available only to
keep PROMULA compatible with previous versions. Use the DO IF NULL statement instead.

DEFI NE SET
m (12) "12 Months"
END SET

DEFI NE VARI ABLE
I mt "Lower Limt val ue"
mv(m) "Monthly val ues”
END VARI ABLE

m(i) = i*10

DEFI NE PROCEDURE nul |
WRITE ("Enter the Lower Limt.")
READ | mt
SELECT mm |F nv GT Int
DO I F END
WRI TE(" There are no nonths with value greater than"lnt)
WRI TE("Try again.")

nul |
END | F END
VRI TE nv: 40

191



Promula Application Development System User's Manual

END PROCEDURE nul |

A dialog with procedure nul | is shown below.

nul |
Enter the Lower Limt.
? 200

There are no months with val ue greater than 200
Try again.

Enter the Lower Limt.
? 100

Mont hly val ues

MN( 11) 110
MN(12) 120

3.7.45 DO IF ERROR

Purpose:
Executes a group of statements if a specific error is generated by the previous statement.

Syntax:

DO I F ERRCR n
st at enent

ENiDI .
Remarks:
n isthe number of the error. The error messages and their numbers are listed in Chapter 6 of this manual.
st at ement isany executable statement (no definitions), including another DO statement.
If the specified error occurs during execution of the statement immediately preceding the DO IF ERROR statement,
PROMULA will execute the group of executable statements between the DO |F ERROR and the END then re-execute the
statement immediately preceding the DO |F ERROR statement.
Example:
Procedure chkval usesthe DO IF ERROR statement to detect an arithmetic overflow or underflow.

DEFI NE PROCEDURE chkval
WRI TE "Pl ease enter a value."
READ val
ans = 100/ val
DO | F ERROR 538

WRI TE (" Pl ease enter a nonzero value.") Error 538 is caused by an
READ val arithmetic overflow or underflow.
END | F ERROR

WRI TE ("The answer is ", ans:-8:3)
END PROCEDURE chkval

192




Promula Application Development System User's Manual

A dialog with procedure chkval isshown below.

DO chkval

Pl ease enter a val ue.
?0

Pl ease enter a nonzero val ue.
? 10

The answer is 10.000

3.7.46 DO IF ESCAPE

Purpose:
Executes a group of statementsiif the user pressed the Esc key in response to a prompt generated by the previous statement.

Syntax:

DO | F ESCAPE
st at enent

ENiD. .
Remarks:
st at enment isany executable statement (no definitions), including another DO statement.

If the user presses Esc in response to a prompt (or selection menu), PROMULA will execute the group of executable
statements between the DO |F ESCAPE and the END statement then re-execute the statement immediately preceding the
DO IF ESCAPE statement.

This statement is usually used to help prevent complications that can result if the user escapes from an application instead
of giving avalid response to a prompt.

Example:

Procedure noesc usesthe DO |F ESCAPE statement to trap and escape.

DEFI NE PROCEDURE noesc
WRI TE " Pl ease enter the value."
READ val
DO | F ESCAPE
WRI TE ("There is no escape!")
END | F ESCAPE
WRI TE ("The value is ",val:-8:3)
END PROCEDURE noesc

A dialog with procedure noesc is shown below.

DO noesc

Pl ease enter the val ue.
? [ Esc]

There is no escape!
? 100

193




Promula Application Development System User's Manual

The value is 100. 000

3.7.47 DO IF HELP

Purpose:
Executes a group of statements if the user presses the Alt and H keys simultaneously in response to a prompt.

Syntax:

DO I F HELP
st at enent

ENiD. .
Remarks:
st at enment isany executable statement (no definitions), including another DO statement.

When the user enters Alt-H in response to a prompt, PROMULA executes the group of executable statements between the
DO IF HEL P and the END statement then re-executes the statement immediately preceding the DO |F HEL P statement.

This statement is usually used to provide the user with information relating to a Data menu or a Pick menu.
This statement and the SELECT HEL P statement are useful for customizing on-line help for your applications.

Pressing Alt-H in response to a Popup pick menu will cause PROMULA to display a specific topic of a dialog file as
indicated in the definition of the pick menu.

Examples:

In the example shown on the next page the dialog file dohel p1. hl p provides context-specific help for the user editing the
data menu dat a.

The DO IF ERRORVALUE statement is used to branch according to location of the currently highlighted field on the data
menu.

If you press Alt-H when the cursor is on the field w — which isthe 3rd field in the data menu — you will get the message
"Please enter your weight in kilograms." — which isthe 3rd topic in the dialog file dohel p1. hi p.

ERRORVALUE isaninternal PROMULA variable that contains the sequence number of the currently highlighted field in
data and pick menus.

Define adialog file with help messages.

DEFI NE DI ALOG "dohel p1. hl p"

( Data Entry Hel p Messages |

Sel ect the desired nessage by using the novenent keys.
Press [ENTER] to access the desired (highlighted) nessage.
Press [END] to return to the previous nmenu.
Press [ESC] to exit to the PROMULA Main Menu.

END

194




Promula Application Development System User's Manual

TOPI C " NAME"
Pl ease enter your last nane in all CAPITAL letters.
END
TOPI C " AGE"
Pl ease enter your age in years.
END
TOPI C " WEI GHT"
Pl ease enter your weight in kil ograms.
END
END

Define a procedure for editing a data menu and providing field-specific help for the data variables in the data menu.

DEFI NE VARI ABLE

nane "User Nanme" TYPE=STRI NG 12)
age "User Age (years)"
wt "User Weight (Kilograns)"

END VARI ABLE

DEFI NE MENU dat a

Data Entry Menu

Name Pl ease enter the infornation.

Age

Wei gh Press Alt-H if you have any
t questi ons.

END

DEFI NE PROCEDURE get dat a
EDI T dat a( nane, age, w)
DO | F HELP
DO | F ERRORVALUE EQ 1
BROAMSE TOPI C " DOHELP1. HLP", 1
ELSE ERRORVALUE EQ 2
BROAMSE TOPI C " DOHELP1. HLP", 2
ELSE ERRORVALUE EQ 3
BROAMSE TOPI C " DOHELP1. HLP", 3
END | F ERRORVALUE
END DO | F HELP
END PROCEDURE get dat a

3.7.48 DO IF KEYPRESS
Purpose:

Executes one or more statements if the user presses a prespecified key in response to a prompt.

Syntax:

statl

DO | F KEYPRESS( keyi d)
st at enent

END

Remarks:

195



Promula Application Development System User's Manual

statl is an interactive statement; for example, an ASK, SELECT, BROWSE or EDIT statement.
keyi d is a keypress name (See Appendix C).
st at ement isany executable statement (no definitions), including another DO statement.

The DO IF KEYPRESS statement is an extension of the DO |F ESCAPE capability and behaves in the same manner. If
the user presses the key named by keyi d in response to an interactive statement, PROMULA will execute the group of
executable statements between the DO |F KEYPRESS and the END statement then re-execute st at 1.

There are two limitations of this capability:
1. No morethan five DO IF KEYPRESS hlocks may follow a single statement.
2. Thekeypressidentified by keyi d must be available and defined for the current keyboard (See Appendix C).

Be warned that use of the DO |F KEYPRESS statement is inherently nonportable, and your application will require source
code changesiif it is moved across the various platforms on which PROMULA runs.

Example:

Proceduret est usesthe DO IF KEYPRESS statement to trap keypresses during an EDIT variable statement.

DEFI NE SET
r ow( 20)
col (10)

END

DEFI NE VARI ABLE
var(row,col) "A variable matrix"
dvar (row,col) "Difference in variable matrix"
filen, TYPE=STRI N& 20)

END

var(r,c) =r + c * 100

DEFI NE PROCEDURE prt
filen = "var.out"
SELECT QUTPUT filen LINES=100 wi dt h=132 PRI NTER=ON
WRI TE var
SELECT LI NES=25 W DTH=80 PRI NTER=OFF
END

DEFI NE PROCEDURE di f

dvar(y,c) = var(y,c) - var(y,1)

BROASE dvar TITLE(var:D, "Differences from base case")
END

DEFI NE PROCEDURE t est
EDIT var TITLE(var: D/ /,
"Press ALT-P to save R
:Atd-D to see difference")
DO | F KEYPRESS( ALTP)

prt
END
DO | F KEYPRESS( ALTD)

di f
END
END

196



Promula Application Development System User's Manual

3.7.49 DO IF NULL
Purpose:

Executes a group of statements once if a null condition occurs.

Syntax:

DO I F NULL
st at ement

ENiD. .
Remarks:
st at ement isany executable statement (no definitions), including another DO statement.

The DO IF NULL statement, can be used to detect a null set selection resulting from a SELECT set |F statement. It may
also be used to detect if the GETDIR function did not find any files matching the search specification.

A SELECT set IF condition statement results in a null condition if the selection condition is false for all elements of the
set. When this occurs, PROMULA does not select a null set; it selects the complete set. The DO IF NULL statement
allows you to detect the null selection and take appropriate action and prevent subsequent abnormal calculations, or other
undesirable effects.

A GETDIR function resultsin anull condition if no files matching the search specification are found.

After the statements in the DO |F NULL block are executed, the SELECT set |F or GETDIR statement that caused the
null selection is re-executed.

Examples:

The following example illustrates the use of the DO IF NUL L statement to detect a null set selection.

DEFI NE SET
m (12) "12 Mont hs"
END SET

DEFI NE VARI ABLE
I nt "Lower Limt value"
m/(m) "Monthly val ues”
END VARI ABLE

m(i) = i*10

DEFI NE PROCEDURE nul |
WRI TE ("Enter the Lower Limt.")
READ | nt
SELECT mm |F nv GT Int
DO I F NULL
WRI TE(" There are no nonths with value greater than"lnt)
WRI TE("Try again.")

nul |
END | F NULL
WRI TE nmv: 40

END PROCEDURE nul I'\

A dialog with procedure nul | is shown below.

197



Promula Application Development System User's Manual

nul |
Enter the Lower Limt.
? 200

There are no nonths with val ue greater than 200

Try again.

Enter the Lower Limt.
? 100

MN( 11)
MN( 12)

Mont hly val ues

110
120

See the section on file management functions for an example of how to use the DO IF NULL statement to detect a "no

match” condition from the GETDIR function.
3.7.50 DO INVERT

Purpose:

Compute the inverse of a matrix.

Syntax:

DO | NVERT(row, col) arr

Remarks:

row isthe identifier of a set dimensioning the matrix to be inverted.

col isthe identifier of a set dimensioning the matrix to be inverted.

arr is the square subarray to be inverted. arr must be dimensioned by the sets row and col . The results of the

inversion will overwritearr .

Theranges of r owand col must be equal in size when DO INVERT iscalled, and the solution process will be restricted to
the first selected entry of the remaining sets subscripting ar r .

Example:

DEFI NE SET
ar ow( 3)
acol (3)
br ow( 3)
bcol (3)
page(2)

END SET

DEFI NE VARI ABLE

a (page, arow, acol ) "A matrix"
i a( page, ar ow, acol ) "I NVERT(A) "
um( page, br ow, bcol ) "UNI T MATRI X"

END VARI ABLE

TYPE=REAL( 10, 6)
TYPE=REAL( 10, 6)
TYPE=REAL( 10, 6)

198




Promula Application Development System User's Manual

SELECT page(1)

READ a( ar ow, acol , page)

123

223

333

a(2,arow, acol) = a(1,arow, acol) * 2
SELECT page*

DEFI NE PROCEDURE t est
DO page
*

* Set |A equal to A

*

ia=a

Invert 1A and display the result.

DO | NVERT (arow, acol) ia

WRI TE i a(arow, acol , page) TITLE(/"1 NVERT (arow, acol) a")

* Verify result by conputing and displaying the matrix product of A and I A

un(p, i, k) = SUMj) ( a(p.i,j) *ia(p.j,k) )

VWRI TE un{ brow, bcol , page) TITLE(/"VERI FY: UNT MATRI X?")
END page
END PROCEDURE t est

SELECT HEADI NG=CFF

Theresults of proceduret est are displayed in the dialog bel ow.

t est

I NVERT (arow, acol) a

PAGE( 1)
ACOL(1) ACOL(2) ACOL(3)
AROW( 1) -1. 000000 1.000000 0.000000
AROW( 2) 1. 000000 -2.000000 1.000000
AROW( 3) 0. 000000 1.000000 - 0. 666667

VERI FY:  UNIT MATRI X?

PAGE( 1)
BCOL(1) BCOL(2)  BCOL(3)
BROW( 1) 1. 000000 0. 000000 0. 000000
BROW( 2) 0.000000 1.000000 0.000000
BROW( 3) 0.000000 0.000000 1.000000

I NVERT (arow, acol) a

PAGE( 2)
ACOL(1)  ACOL(2)  ACOL(3)
AROW( 1) -0.500000 0.500000 0.000000
AROW 2) 0. 500000 -1.000000 0.500000
AROW( 3) 0.000000 0.500000 - 0. 333333

VERI FY:  UNIT MATRI X?

199




Promula Application Development System User's Manual

PAGE( 2)
BCOL(1) BCOL(2)  BCOL(3)
BROW( 1) 1. 000000 0. 000000 0. 000000
BROW( 2) 0.000000 1.000000 0.000000
BROW( 3) 0.000000 0.000000 1.000000

3.7.51 DO LSOLVE
Purpose:

Solve one or more systems of linear equations.

Syntax:

DO LSOLVE(row, col [, pagl,pag2,...]) (amat, bmat)
Remarks:
row isthe identifier of a set dimensioning both amat and brat .
col isthe identifier of a set dimensioning anat .

pagl, pag2, ... aretheidentifiers of sets subscriprting bmat .

amat isthe identifier of the coefficient matrix.
bmat isthe identifier of the result matrix.
The statement

DO LSOLVE (i,j,p) (A B)

will compute the solution vectors X(j , p) for the system of linear equations

All * Xlp + al2*X2p + ... + alj * Xjp = blp
A21 * Xlp + a22*X2p + ... + a2j * Xjp = b2p
Al * Xlp + ai2*X2p + ... +aij * Xjp =bhip

The solution vectors X(j , p) will overwritetheB(i , p) values.

Therangesof i andj must be equal in size when DO L SOLVE iscalled, and the solution process will be restricted to the
active range of the sets subscripting the arguments.

Example:
DEFI NE SET
arow( 3) "Linear Equation"
acol (3) "Product Ternt
page(2) "Page of Systent
END SET

200




Promula Application Development System User's Manual

DEFI NE VARI ABLE

a(arow, acol )
b( ar ow, page)
x( ar ow, page)
y(arow, page)
END VARI ABLE

"Coefficient Matrix"
"Result Vectors"

"Sol ution Vectors"
"Test Result Vectors"

DEFI NE PROCEDURE t est
*

* Copy the result vectors B(i, page)

X = b

* Sol ve system of
DO LSOLVE( ar ow, acol , page) (a,

* Verify the Results.

y(i,p)

WRI TE a:: 2
WRI TE b::2
WRI TE x::2
WRI TE y::2

into the vectors X(i, page).

linear equations for each page.
X)
X(i,p)

A(i L)) = shoul d equal B(i, p).

=SUMj) ( a(i,j) * x(j.p) )

END PROCEDURE t est

Theresults of proceduret est are displayed in the dialog bel ow.

t est

Coefficient Matrix

ACOL(1) ACOL(2) ACOL(3)

AROW( 1) 1.00 2.00 3.00
AROW( 2) 2.00 2.00 3.00
AROW( 3) 3.00 3.00 3.00
Result Vectors
PACE(1) PAGE(2)
AROW( 1) 6. 00 14. 00
AROW( 2) 7.00 15. 00
AROW( 3) 9. 00 18. 00
Sol ution Vectors
PAGE(1) PAGE(2)
AROW( 1) 1.00 1.00
AROW( 2) 1.00 2.00
AROW( 3) 1.00 3.00

Test Result Vectors

201




Promula Application Development System User's Manual

PAGE(1) PAGE(2)

ARON( 1) 6.00 14.00
ARON( 2) 7.00 15.00
AROW( 3) 9.00 18.00

.7.52 [DOQO] procedure

Purpose:
Executes a procedure.

Syntax:

[DQ proc [, SUBTITLE "text"]
Remarks:
proc istheidentifier of a procedure.
text isastring of charactersthat will be appended to the titles of reports produced by procedure pr oc.

Example:

This example illustrates several title modification options and the variable:L notation. Notice that the displayed title
TI TLE parameter first, followed by the scenario name, the run identifier, the subtitle, and finally, the time interval.

DEFI NE SET
row( 2)
run(2)
tim(10) TI ME(1990, 1999)
END SET
DEFI NE VARI ABLE
a(row,tim TYPE=REAL(5, 1) "THE A MATRI X"
snane TYPE=STRI N 12)
END VARI ABLE
a(i,j)=i*j
snanme="SCENARI O x"

READ r ow
row 1
row 2
READ run
RUN 1
RUN 2

DEFI NE PROCEDURE pr oc
SELECT run(2)
SELECT RUNI D=r un SCENARI O=snarme

WRITE a\7: 7 TITLE(a: L)
END PROCEDURE pr oc

The statement

DO proc SUBTI TLE "This is the subtitle”

produces the display below

202



Promula Application Development System User's Manual

THE A MATRI X
SCENARI O x, RUN 2, This is the subtitle, 1990 to 1999

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
row 1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
row 2 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

3.7.53 DO REGRESS

Purpose:

Produces a report of one or more pages of the results of multivariate |east-squares regression for specified variables by
finding the best fit for the following model:

Y =Bo+B1*X1+PB2Xo+, ..., +PBnXn

Y isthe dependent variable, the X; are the independent predictor variables, and the B; are the regression coefficients.

Syntax:

DO REGRESS [(sets)] (vars) [output]

Remarks:

sets

vars

out put

isalist of set identifiers subscripting the array(s) to be regressed.

The specification of set s controls the analysis of the variables specified in var s by defining the index of the
observations and the order of pages produced. The last set in set s specifies the index of the observations, the
preceding sets specify the order in which pages of the report are displayed. The ordering of report pages
corresponds to the specification of the sets in set s from left to right — left varying the fastest. The default
value for set s is the reverse of the set specification used in defining the highest dimensional variable in var s
with the first set in the definition indexing the observations, and the remaining sets heading report pages.

isalist of variable identifiers specifying the arrays to be regressed. The list may also contain the time parameter
TIME if all the variables in var s have a time series set as one of their indexes. The first variable specified in
vars will be treated as the dependent variable (Y), the remaining variables will be treated as the independent
regressors (Xj). vars must contain at least two variables. One-dimensional arrays (vectors), are used in
regression calculations directly. Two- and higher-dimensiona arrays are partitioned into sets of observations,
and a separate report is generated for each page and column of the highest dimensional array invar s.

is alist of output specifiers that allow the storage of regression results in program variables. If any output is
stored in variables, no report is displayed. out put may consist of one or more of the following:

CCEFF = cf to store the regression coefficientsin variable cf

TVALUE = tv to store the Student's t statistic for the regression coefficientsin variablet v
STDERR = se to store the standard errors of regression coefficientsin array variable se
STDDEV = sd to store the standard deviation(s) of regression model(s) in variable sd
RSQUAR = rs to store the R-Square(s) of regression model(s) in variabler s

The output variables should be dimensioned so that they can pick up the desired regression results; see the
example below.

203




Promula Application Development System User's Manual

The following values may be reported/stored:

1. Theregression coefficient (Bj), Student'st statistic, and standard error, for each independent variable in the model and
for the intercept, B (referred to as CONS in the report).

2. Theoveral variance and standard deviation of the regression model.
3. Theadjusted coefficient of correlation between the observed and predicted values of the dependent variable.

A title— Regression Analysis Results — is printed at the top of each page. Subtitles consisting of the row descriptors for
sets specified in set s appear when more than one report page is produced.

Examples:

DEFI NE SET

grp(2) "Test G oups”

tinm(12) "Tinme Points" TIME(1,12)

trm(3) "Regression Terns (Il ndependent Variabl es + CONSTANT)"
END SET

DEFI NE VARI ABLE
*

* REGRESSEI ON | NPUTS

*

rsp(timagrp) "Response Variable By Group and And Ti ne"
ivi(timgrp) "lndependent Variable 1 by G oup and Tine"
iv2(timgrp) "lIndependent Variable 2 by Goup and Ti nme"

* REGRESSI ON QUTPUTS

cf(trmagrp) "Coefficients of the Regression Terns"

tv(trmagrp) "T-Value for the Coefficients of the Regression Terns"
se(trmgrp) "Stderr Errror for the Coefficients of the Regression Terns"
sd(grp) "Standard Devi ati on of Regression Mdel"

rs(grp) "R-Square of Regression Mdel"

END VARI ABLE

SELECT grp(1)

READ ivl(grp,tim

16.7 17.4 18.4 16.8 18.9 17.1 17.3 18.2 21.3 21.2 20.7 18.5
READ iv2(grp,tim

30.0 42.0 47.0 47.0 43.0 41.0 48.0 44.0 43.0 50.0 56.0 60.0
READ rsp(grp,tim

210 110 103 103 91 76 73 70 68 53 45 31

ivi(t,2) = ivl(t,1)
iv2(t,2) = iv2(t,1)
rsp(t,2) = rsp(t,1)
SELECT grp*

READ TRMS ROW( 1, 6)
V1

I'v2

CONS

DEFI NE PROCEDURE dor egr
*

* Regression -- Report

*

DO REGRESS(grp,tim (rsp,ivl,iv2)

204



Promula Application Development System User's Manual

* Regression -- Save Qutput

*

DO REGRESS(grp,tim (rsp,ivl, iv2),

CCEFF = cf,
TVALUE = tv,
STDERR = se,
STDDEV = sd,
RSQUAR = rs

WRI TE TABLE(grp,trm) TITLE(///"Regression Results") FORMAT(50, 10),
BODY(cf::4 tv::4 se::4 sd::4 rs::4)
END PROCEDURE dor egr

The output of procedure dor egr is displayed below

Regression Analysis Results, 1 to 12

GRP(1)
Term Coefficient T- Val ue S E
I Vi -6.592777 -1.357 4.859254
I V2 -4.503562 -4.204 1.071156
CONS 415. 113000 5.031 82.517400

Vari ance=598. 0237
St andard Devi ati on=24. 45452
Adj ust ed R- Squar e=0. 7164

GRP(2)
Term Coefficient T- Val ue S E
I vi -6.592777 -1.357 4.859254
I V2 -4.503562 -4.204 1.071156
CONS 415. 113000 5.031 82.517400

Vari ance=598. 0237
St andard Devi ati on=24. 45452
Adj ust ed R- Squar e=0. 7164

Regression Results

V1
GRP(1) GRP( 2)
Coefficients of the Regression Terns -6.5928 -6.5928
T-Val ue for the Coefficients of the Regression Ter -1. 3567 -1. 3567
Stderr Errror for the Coefficients of the Regressi 4. 8593 4. 8593
St andard Devi ati on of Regressi on Mbdel 24. 4545 24. 4545
R- Squar e of Regression Mdel 0.7164 0.7164
' V2
GRP(1) GRP(2)
Coefficients of the Regression Terns -4.5036 -4.5036
T-Val ue for the Coefficients of the Regression Ter -4.2044 -4.2044
Stderr Errror for the Coefficients of the Regressi 1.0712 1.0712
St andard Devi ati on of Regressi on Model 24. 4545 24. 4545
R- Squar e of Regression Model 0.7164 0.7164
CONS

GRP(1) GRP(2)
Coefficients of the Regression Terns 415. 1130 415.1130
T-Val ue for the Coefficients of the Regression Ter 5. 0306 5. 0306
Stderr Errror for the Coefficients of the Regressi 82.5174 82.5174

205




Promula Application Development System User's Manual

St andard Devi ati on of Regressi on Model 24. 4545 24. 4545
R- Squar e of Regression Model 0.7164 0.7164

3.7.54 DO set
Purpose:

Executes repeatedly a group of statements. The number and order of iterations is determined by the number and order of the
elements of the set, as defined by the set’s current selection vector.

Syntax:

DO set
st at enent

ENiD- .
Remarks:
set istheidentifier of a set.
st at ement isany executable statement (no definitions), including other DO statements.
The statements from DO set to END are usually called a"DO set loop".

The statements between the DO set and END statements are executed once for each element in the current set selection
vector for set . By default, the set selection vector contains N elements ordered from 1 to N; where N isthe size of set as
specified in its definition. The order and range of the elements of the selection vector may be modified by the various set
selection statements and the SORT statement.

Within an iteration of the DO set loop, the range of set is fixed to a single element, and vectors subscripted by set are
treated as scalars in calculations and other expressions; multidimensional array variables subscripted by set are evaluated
at the current value of the subscript set .

If a DO set loop executes properly for each active element in set , the range and order of set after the loop will be the
same as before the loop started. However, if execution of the loop aborts abnormally, the range of set will be fixed at the
element that was active when the abort occurred.

Examples:

In this example, the procedure doset contains a DO set loop. The statements between the DO nont h statement and the
END DO nont h statement are executed once for each active element in the selection vector for set nont h.

The variable nont h: S has the value of the current selection of the nont h set. Similarly, the variable nv has the value
mv(m , where mis ascalar subscript which will be assigned the current val ue of the nont h subscript.

DEFI NE SET
nont h(12)
END SET

DEFI NE VARI ABLE
m "Mont h Nunber "
nmv(nmont h) "Monthly Val ue”
END VARI ABLE

206




Promula Application Development System User's Manual

DEFI NE PROCEDURE doset
DO nont h
m = nonth:S
m/ = m?* 10
WRI TE CENTER(" The current nmonth nunber is " m-5" The nonthly value is " mv:-5)
END nont h
END PROCEDURE doset

Executing procedure doset produces the output below.

The current nonth nunber is 1 The nmonthly value is 10
The current nonth nunber is 2 The monthly value is 20
The current nonth nunber is 3 The nmonthly value is 30
The current nonth nunber is 4 The monthly value is 40
The current nonth nunber is 5 The nmonthly value is 50
The current nonth nunber is 6 The monthly value is 60
The current nonth nunber is 7 The monthly value is 70
The current nonth nunber is 8 The nmonthly value is 80
The current nonth nunber is 9 The monthly value is 90
The current nonth nunber is 10 The monthly value is 100
The current nonth nunber is 11 The monthly value is 110
The current nonth nunber is 12 The monthly value is 120

The number of iterations as well as the order of execution is dictated by the current selection vector of the set controlling
the DO set loop. For example the statements

SELECT nont h(1, 12, 6)
doset

produce the output below

The current nonth nunber is 1 The nmonthly value is 10
The current nonth nunber is 12 The monthly value is 120
The current nonth nunber is 6 The nmonthly value is 60

3.7.55 DO UNTIL

Purpose:
Executes repeatedly a group of statements until a given condition is met.

Syntax:

DO UNTIL condition
st at enent

ENb”
Remarks:
condi ti on isany Boolean expression, i.e., an expression that is either true or false. If false, the statements between the
DO UNTIL and the END statement are executed; if true, the statements between the DO and END are not

executed.

st at ement isany executable statement (no definitions), including a DO statement.

207




Promula Application Development System User's Manual

The group of statements together with the DO and END statements is called aDO UNTIL loop. DO loops may be nested

to any depth.

The value of condi t i on iscomputed before each iteration of the DO loop.

Examples:

The following dialog demonstrates the execution of aDO UNTIL loop:

DEFI NE VARI ABLE
X
END VARI ABLE

x =0
DO UNTIL x GT 3
WRI TE (x, " Top of the |oop")
X = x+1
WRI TE (x,"Bottom of the | oop")
END UNTI L
Top of the | oop
Bott om of the | oop
Top of the | oop
Bott om of the | oop
Top of the | oop
Bottom of the | oop
Top of the | oop
Bottom of the | oop

AP WWNNEFEPFPLPO

From this example, you can see how easy it isto construct infinite loops — simply remove the equation x = x+1.

3.7.56 DO WHILE

Purpose:

Executes repeatedly a group of statements while a given condition is met.

Syntax:
DO WHI LE condition
st at enent
ENiD. .
Remarks:
condi tion is any Boolean expression, i.e., an expression that is either true or false. If true, the statements between
the DO WHILE and the END statement are executed; if false, the statements between the DO and END
are not executed.
st at enent is any executable statement (no definitions), including aDO statement.

The group of statements together with the DO WHILE and END statementsis called a DO WHILE loop. DO loops may

be nested to any depth.

The value of condi t i on iscomputed before each iteration of the DO loop.

208



Promula Application Development System User's Manual

Examples:

The following dialog demonstrates the execution of aDO WHILE loop:

DEFI NE VARI ABLE
X
END VARI ABLE

x =0
DO WH LE x LT 3
WRI TE (x, " Top of the |oop")
X = x+1
WRI TE (x,"Bottom of the |oop")

E

0 Top of the | oop

1 Bottom of the |oop
1 Top of the loop

2 Bottom of the | oop
2 Top of the | oop

3 Bottomof the | oop

3.7.57 EDIT menu
Purpose:

Displays a data menu for editing.

Syntax:

EDI T nmenu(vars)
Remarks:
menu istheidentifier of adata menu.

vars isalist of variable identifiers that contain the values of the data fields being edited. The variables in the list must
be arranged in the same order as the menu data fields to which they correspond.

Data menus contain a number of data fields to be edited by the user. In the DEFINE MENU statement, each data field is
denoted by a series of contiguous ‘at' (@) or 'tilde' (~) characters, equal in number to the width of the data field. The data
fields are ordered from left to right and from top to bottom of the menu.

Upon execution, the data menu becomes a screen display that has the first data field highlighted. Use the movement keysto
highlight the desired data field. To edit the highlighted data field, press the Enter key and enter the new value, as prompted
at the bottom of the screen.

Data fields may also be selected by "point and click" operations with a mouse.

The menu display will be clipped by the boundaries of the window opened to the Main Screen.

Examples:

The use of the EDIT menu statement isillustrated in the context of the example given in the DEFINE M ENU statement.

209




Promula Application Development System User's Manual

3.7.58 EDIT TABLE
Purpose:

Displays atable of several variables on the screen to let you interactively edit their values.

Syntax:
EDI T TABLE(sets)[, TITLE(title)][, FORMAT(rw, cw)],
BODY(["text1",] varl[fmt1] [,"text2",] var2[fm2],...), option

Remarks:

sets isalist of the identifiers of the sets classifying columns and pages of the variables in the table. The first set
will classify the columns of the table; the other sets, if any, will classify the pages of the table. Sets
dimensioning table variables which are missing from the list will classify the rows of the table. The set s list
sets must contain at least one set (or the number 1 for browsing a group of scalar variables) and must be
missing those set identifiers which will classify the rows of the multidimensional table variables.

title isany text you wish to show as atitle for the table. The title may include variables and other format characters
according to the rules defined in the WRITE variables statement.

text1l isany text that you wish to use as a subtitle for the values of var 1. Thistext may not contain variables.

varl istheidentifier of thefirst variable in the table.

fntl is the desired format for the values of var 1. Usually, this is used to specify the number of decimal digits for
var 1.

text2 isany text that you wish to use as a subtitle for the values of var 2. Thistext may not contain variables.

var 2 istheidentifier of the second variable in the table.

fnt2 isthe desired format for the values of var 2.

rw isthe width in characters of row descriptors.

cw isthe width in characters of table columns.

option is one of the following:
BY ROW to edit values by row (entering a value moves the bounce bar to the right)
BY COLUMN to edit values by column (entering a value moves the bounce bar down)
BY VALUE to edit values by single value (bounce bar does not move automatically). This is the

default

A table isadisplay or report of severa variables whose values are classified by a common set (or sets). The common sets
classify the columns and pages of the table.

A table has a body and an optional title and format. The body of the table contains the identifiers of the variables whose
values will be displayed as the body of the table.

Y ou may include as many variables as you wish in the body of atable.

210



Promula Application Development System User's Manual

Y ou may include slash characters /" between the specifications of variables and descriptive text to insert blank linesin the

display.

If you wish to 'write' an entire table, instead of 'editing' it by page, use the WRITE TABLE statement.

Upon execution, the EDIT TABLE statement clears the Main Screen, displays the first page of the table and issues the
following message at the bottom of the display:

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Select Enter: Edit

The highlighted portions of the message represent the following options:

Fn

Shift-Fn

Arrows
PgUp
PgDn
Home

Enter

End

press the Fn function key to browse "up" the nth dimension of the array, where n varies from 1 to 10. The F1
key browses "up" the 1st dimension, the F2 key browses "up” the 2nd dimension, and so forth.

press simultaneously the Shift and Fn keys to browse "down" the nth dimension of the array, where n varies
from 1 to 10. The F1 key browses "up" the 1st dimension, the F2 key browses "up" the 2nd dimension, and so
forth. The Shift-F1 key browses "down" the 1st dimension, the Shift-F2 key browses "down" the 2nd
dimension, etc.

The four movement arrows at the right-hand section of the keyboard alow you to move the cursor to the
desired value. The Page-Up and Page-Down keys may be used to move up and down the pages of the display.
moves the cursor to the "top" of the display, which isthe first value on the first page.

pressthe Enter key to initiate editing mode. This causes the following:

1. highlightsthe value to be edited with a block cursor

2. issuesthe following message at the lower |eft-hand corner of the Prompt Screen:

Enter val ue or End?

At this point you may change the marked value by entering a new one and pressing the Enter key. The cursor
moves to the next value to edit, and so forth.

press the End key to exit editing mode or to exit browsing mode.

The WRITE TABLE statement and tables defined by the DEFINE TABLE statement will behave likethe EDIT TABLE
statement if aSELECT BROWSE=VALUES\ ROW \ COLUM N statement has been executed.

Examples:

See the descriptions of the BROWSE TABLE and DEFINE TABLE statements for an example of atable.

3.7.59 EDIT variable

Purpose:

Displays avariable on the screen to let you

1. browsethe variable by page

211



Promula Application Development System User's Manual

2. changeitsvaluesin screen-editing mode.

Syntax:

EDIT var[fnt][ ORDER(sets) ][ TI TLE(title)][ DI SPLAY(dvar)][option]

Remarks:
var

fnt

sets

title

dvar

option

isthe variable identifier.

is a format specification indicating the width of row descriptors, the width of the columns displayed, and the
number of decimalsin real values, as follows:

\p:wd
where

p is an integer specifying the width in characters for row descriptors. The default width is the width
specifications of the row descriptors related to the set subscripting the rows of the display.

w is an integer specifying the width in characters for each column of values. The default is the width
specification in the definition of var. A negative width parameter left justifies the values of var in each
column.

d is an integer specifying the number of decimals to display for real numeric values. The default is the
decimal specification (if applicable) in the definition of var. If d is an "E", the values of var will be
displayed in exponential notation (base-10), and will show seven digits and six decimal places.

If omitted, w and d are the parameters specified in the TYPE specification for var, and p is the width
specifications of the row descriptors related to the set subscripting the rows of the display.

isalist of the sets classifying the values of var . The order of the sets in this list specifies the structure of the
display: thefirst set classifies the rows of the display, the second set classifies the columns, and the third to last
set classifies the pages of the display. The keyword ORDER is optional; if omitted, set s must immediately
follow the optional format specification.

is any text you wish to show as atitle for the table. The title may include variables, and other format characters
according to the rules defined in the WRI TE text statement.

isavariable used to control the display of variable var . dvar should be indexed by the set that defines the rows
of the display. PROMULA will display values of var only for those rows corresponding to elements of dvar
that contain nonzero values. See Example in the section on the BROW SE variable statement.

is one of the following:

BY ROW to edit values by row (entering a value moves the bounce bar to the right).

BY COLUMN to edit values by column (entering a value moves the bounce bar down).

BY VALUE to edit values by single value (bounce bar does not move automatically). BY VALUE isthe
defaullt.

Upon execution, the EDIT variable statement clears the Main Screen, displays the first page of the array and issues the
following message at the bottom of the display:

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Select Enter: Edit

212



Promula Application Development System User's Manual

The highlighted portions of the message represent the following options:

Fn press the Fn function key to browse "up" the nth dimension of the array, where n varies from 1 to 10.

Shift-Fn  press simultaneoudly the Shift and Fn keys to browse "down" the nth dimension of the array, where n varies
from 1 to 10. The F1 key browses "up" the 1st dimension, the F2 key browses "up" the 2nd dimension, and so
forth. The Shift-F1 key browses "down" the 1st dimension, the Shift-F2 key browses "down" the 2nd
dimension, etc.

Arrows The four movement arrows at the right-hand section of the keyboard allow you to move the cursor to the

PgUp desired value. The Page-Up and Page-Down keys may be used to move up and down the pages of the display.

PgDn

Home moves the cursor to the "top" of the display, which isthe first value on the first page.

Enter pressthe Enter key to initiate editing mode. This causes the following:

1. highlightsthe first value to be edited with a block cursor

2. issuesthe following message at the left-hand corner of the Prompt Screen:

Enter val ue or End?

At this point you may change the marked value by entering a new one and pressing the
Enter key. The cursor moves to the next value to edit, and so forth.

End press the End key to exit editing mode or to exit browsing mode.
Examples:
Given the following definitions:

DEFI NE SET

row( 3)
col (2)

page(2)
END SET
DEFI NE VARI ABLE

a(row, col , page) "A 3-Dinensional Array"
END VARI ABLE

the statement

EDIT a

clears the screen and produces the following display:

213



Promula Application Development System User's Manual

A 3-Dinensional Array

PAGE( 1)
CcoL(1) COL(2)
ROW 1) 0 0
RON(2) 0 0
ROW 3) 0 0

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Select Enter: Edit

To browse "up" the pages or third dimension, press the F3 key to get the following display:

A 3-Dinensional Array

PAGE(2)

1
RON(1) 0
ROW 2) 0
ROW( 3) 0

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

214



Promula Application Development System User's Manual

You may now begin editing the array. The value in cell RON 1), COL( 1) is highlighted. Press the Enter key to change
the valuein this cell. The following display results:

Enter value or End: 1

Enter the value 1 and pressthe Enter key. The following display results:

215



Promula Application Development System User's Manual

A 3-Dinensional Array

PAGE( 2)
CoL(1) 00L(2)
RON(1) 1 0
RON(2) 0 0
ROW(3) 0 0

Enter value or End: 2.6

The cursor now highlights the value in the RON(1), COL(2) cell. Type the value 2.6 and press the Enter key. The
following display results:

A 3-Dinensional Array

PAGE( 1)

CcoL(1) COL(2)
ROA(1) 1 3
ROW 2) 0 0
ROA(3) 0 0

Enter value or End:

216



Promula Application Development System User's Manual

The value 2.6 isrounded up to 3 because variable a was defined with the default type, REAL (8,0). Internally, however, the
value is stored correctly as2.6. Thisis verified below.

Pressthe End key. The following display results:

A 3-Dinensional Array

PAGE( 2)
CcoL(1) ©O(2)
ROW 1) 1 3
ROA(2) 0 0
ROA(3) 0 0

End: Exit Fn Shift-Fn PgUp PgDn Home Arrows: Select Enter: Edit

Press the End key again. This gets you out of editing mode.

To verify the above editing, the following dialog shows the values of a by column, row and page, with two decimal digits:

WRI TE a(col, row, page): 10: 2
A 3-Di nensi onal Array

PAGE( 1)
RON1) RON2) ROA3)
CoL(1) 0. 00 0. 00 0. 00
COL(2) 0.00 0.00 0.00

PAGE( 2)
RON1) RON2) ROA3)
CoL(1) 1.00 0. 00 0. 00
CoL( 2) 2.60 0. 00 0. 00

3.7.60 END

Purpose:

217



Promula Application Development System User's Manual

Ends a structured group of statements.

Syntax:
END [ conment ]
Remarks:
conmment isan optional comment that you may wish to use in order to distinguish one END statement from another.

The following statements require an END statement:

ASK...ELSE

*  BROWSE COMMENT

*  BROWSE TEXT
DEFINE DIALOG
DEFINE FILE
DEFINE FUNCTION

* DEFINE MENU

DEFINE PARAMETER

DEFINE PROCEDURE

DEFINE RELATION

DEFINE SET

DEFINE SYSTEM

DEFINE VARIABLE

DEFINE WINDOW

DO DIRECTORY

DO FILE

DO IF..ELSE

DO IFEND

DO IF ERROR

DO IF ESCAPE

DO IFHELP

DO IF KEYPRESS

DO IF NULL

DO set

DO UNTIL

DO WHILE

FIELD (in Popup M enu definitions)

TOPIC (In Dialog files)

WRITE COMMENT

WRITE TEXT

* X X X

*  These structured statements contain free form text; therefore, the END statement must be capitalized and start in
column 1, to distinguish it from other occurrences of the word "end" in the text. No comment is allowed after these
END statements.

The END SEGMENT and END PROGRAM statements are specia cases of the END and are discussed in the following
two sections.
3.7.61 END PROGRAM

Purpose:

Ends a program and writes the executable code and data to the currently open segment file on disk. The logical identifier of
the segment is"M AIN". Both the program code and the data values of its variables are saved on disk.

218



Promula Application Development System User's Manual

Syntax:

END PROGRAM [ MAIN] [, DQ(proc)]
Remarks:
MAI N isthe default identifier of any executable program module.

proc s the identifier of a procedure in segment MAIN. When the program is read in, this procedure is executed
automatically.

Upon compilation, this statement terminates the program and writes on a disk file the information of the program. The start
of the program isthe DEFINE PROGRAM statement. The program is written on the disk file specified on the last OPEN
SEGMENT statement. To execute the program, use the OPEN SEGMENT and READ SEGMENT statements.

Examples:

The statements below define a program, named by default MAIN, and write the executable program code on a disk file
named hel | 0. xeq:

OPEN SEGVENT "hel | 0. xeq", STATUS=NEW
DEFI NE PROGRAM " A Progr ant

DEFI NE PROCEDURE pr oc
WRI TE("Hel l o, World!")
END proc

END PROGRAM DO pr oc)

To read this program for execution, use the statements

OPEN SEGMVENT "hel | 0. xeq"
READ SEGVENT MAI N

or the statement
RUN PROGRAM "hel | 0. xeq"
The procedure pr oc is executed automatically at program startup.
This program could aso be started by selecting option 6 from the PROMULA Main Menu and specifying "hello" as the
name of the program to be executed.
3.7.62 END SEGMENT
Purpose:
Ends the definition of a program segment and writes the segment code and data to the currently open segment file.
Syntax:
END SEGVENT seg [, DQ( proc)]

Remarks:

219



Promula Application Development System User's Manual

seg isthe identifier of a segment asit appeared on the DEFINE SEGMENT statement that began the segment.

proc is the identifier of a procedure in segment seg. When the segment is loaded, this procedure is executed
automatically.

Upon compilation, this statement writes on a disk file the information of the segment. The start of the segment is the
DEFINE SEGMENT seg statement. The segment is written in the disk file specified on the last OPEN SEGMENT
statement.

To load the segment for execution, use the READ SEGMENT statement.
Examples:

The statements below define a two segmented program, the program contains the top-level segment, MAI N, and two level-

one segments named segl and seg2. The code and data of all three segments are saved on a disk file named
program xeq:

OPEN SEGVENT "program xeq", STATUS=NEW
DEFI NE PROGRAM " NAI N'

DEFI NE PROCEDURE st art
READ SEGVENT segl
READ SEGVENT seg?2

END PROCEDURE st art

DEFI NE SEGVENT segl
DEFI NE PROCEDURE pr oc
WRITE ("Hello fromsegl")
END proc
END SEGVENT segl, DQ(proc)

DEFI NE SEGVENT seg?2
DEFI NE PROCEDURE pr oc
WRITE ("Hello from seg2")
END proc
END SEGVENT seg2, DQproc)

END PROGRAM DO st art
To read this program for execution, use the statement
RUN PROGRAM pr ogr am xeq
The procedure named start in segment MAIN executes automatically because it is indicated in the DO clause of the

END PROGRAM statement. Procedure st art then uses the READ SEGMENT statement to load segl and seg2 in
sequence. When each segment is loaded, the procedure pr oc, defined in the segment executes automatically.

3.7.63 LEVEL

Purpose:

Isused in dynamic simulation procedures and has two functions.

1. Itsignalsthe start of the LEVEL section of a dynamic procedure.

2. It declares the endogenous time series variables to be computed and stored at the fixed time points of the time series
sets classifying the output time series.

220



Promula Application Development System User's Manual

Syntax:

LEVEL (otsl = evl [, ots2 = ev2, ...] )
Remarks:
otsl isanoutputtimeseries (i.e., an array variable that isindexed by atime series set.)
evl is an endogenous variable that is used explicitly in the LEVEL (and/or RATE) sections of a dynamic procedure.
ots2 isanoutput time series variable for asecond LEVEL statement equation.
ev2 is an endogenous variable for asecond LEVEL statement equation.
The equations of the LEVEL statement form alist of correspondence between output time series and endogenous variables
that are used locally in the equations of the LEVEL (and/or RATE) section of a dynamic procedure. Based on this
equivalence, the values of the output time series will be computed and stored at the fixed time points of the time index

classifying the series.

Only those endogenous variables that are intended to be saved for later use as a time series need to be included in the
endogenous variableslist of the LEVEL statement.

The values of an output time series at each time point of the time series set are set equal to the values of the local
endogenous variable corresponding to the nearest simulation time point plus or minus DT/2, where DT is the time
parameter DT. The value of an output series at a time point t is set equal to the computed value of the corresponding
endogenous variable that is associated with the interval (t —-DT/2, t +DT/2). This interval is closed at -DT/2 and open at
t +DT/2. If t isthe exact midpoint of the interval, then thet —DT/2 value applies.

Execution of a LEVEL statement causes the TIME parameter to be incremented by DT units from its value in the
preceding RATE section.

The LEVEL statement may only be used inside a procedure; it cannot be used in command mode.

Examples:

For more information on dynamic simulation with PROMULA, see the discussion of Dynamic Procedures in the
DEFINE PROCEDURE section of this chapter and the discussion of the RATE statement.

3.7.64 OPEN file

Purpose:

Opens adisk file for physical write/read operations of data to/from disk.

Syntax:

OPEN file filespec [ STATUS=st atus] [ READONLY]
Remarks:
file isthe identifier of afilein your program.

fil espec isaquoted string or string variable containing the name of the disk file to be opened. f i | espec may contain
any filenamethat is valid for your operating system.

221



Promula Application Development System User's Manual

st at us is one of the following options:

NEW to open a new file of any type. When using the OPEN file statement with STATUS=NEW,
any file with the same name asf i | espec will be deleted before the new fileis opened.

OoLD to open an existing file of any type. Attempting to open a non-existing file with
STATUS=0LD will cause an execution error. You may use the FILEEXI ST function to test
if afile exists. OLD isthe default status.

DYNAMIC to open an existing array file for automatic dynamic access. When an array file is opened with
DYNAMIC status, PROMULA attempts to read the entire contents of the file into memory. If
there is enough memory, the variables in the file may be accessed from memory — with a
significant reduction in access time. If there is not enough memory to load the file,
PROMULA will report an execution error. When the file is closed, its entire contents will be
written out to disk. Automatic dynamic access is generally limited to small databases or
machines with large and/or virtual memory.

VIRTUAL  to open an existing array file for paged virtual access. When an array file is opened with
VIRTUAL status, PROMULA attempts to read/write large sections of the data. If there is
enough memory, the variables in the file may be accessed from memory — with a significant
reduction in access time. If there is not enough memory to "page-in" the file, PROMULA will
report an execution error. When the fileis closed, its entire contents will be written out to disk.
The VIRTUAL status requires less memory than DYNAMIC status, but it is generaly
limited to small databases or machines with large and/or virtual memory.

If the keyword READONLY isincluded with the OPEN file statement, the file is given read only status by the operating
system; it may be read from but not modified, and it may be accessed by more than one user at the same time.

Examples:

1. In this example, the array file, fil el, is created on disk as the filefil el. dat. A database of 1000 records each
containing 10 fields of 20 characters of information isbuiltinfi | el. dat .

DEFI NE FI LE
filel
END FI LE
OPEN filel "filel.dat", STATUS=NEW
DEFI NE SET filel
rec(1000)
fl1d(10)
END SET
DEFI NE VARI ABLE filel
data(rec, fld) TYPE=STRI NG 20) "A Disk Variabl e"
END VARI ABLE filel

CLEAR filel

2. Tousefil el created in Example 1 you need to enter the following statement:

OPEN filel "filel.dat" STATUS=0OLD

See Chapter 4 for details on database management.

222



Promula Application Development System User's Manual

3.7.65 OPEN SEGMENT
Purpose:

Opens a segment file on disk for physical write/read operations.

Syntax:

OPEN SEGMENT fil espec [, STATUS=st at us]
Remarks:

fil espec isaquoted string or string variable containing the name of the segment file to be opened. fi | espec may
contain any filename that is valid for your operating system.

st at us is one of the following options:
NEW to mean anew file. A new file is one which does not yet exist.
OoLD to mean an existing file.

If omitted, the default is STATUS=0LD.

CAUTION! When using the OPEN file statement with STATUS=NEW, any file on the current directory with the
same name asfi | espec will be deleted before the new file is opened.

An old file is one which already exists. You may read from an old segment file and modify existing data values, but you
cannot add new datato it.

Once opened under the STATUS=NEW option, you may write to a new file using the DEFINE PROGRAM and
DEFINE SEGMENT statements. The actual write operation is done at the conclusion of the segment definition, i.e., it is
initiated by the END SEGMENT or END PROGRAM statement.

Once opened, you may load program segments into your working space with the READ SEGM ENT statements.

Examples:

1. Define a segmented program.

OPEN SEGVENT "program xeq", STATUS=NEW
DEFI NE PROGRAM " Segnent ed Progrant
statenents of MAIN

DEFI NE SEGVENT segl
statenents of segl

DEFI NE SEGMENT segll
statenents of segll

END SEGMVENT segll
END SEGVENT segl
DEFI NE SEGVENT seg?2
statenents of seg2

END SEGVENT seg2
END PROGRAM

223



Promula Application Development System User's Manual

In the above code, the file pr ogr am xeq was opened on disk and a number of program segments were written in it.
These segments are organized into the following hierarchical tree structure;

Main

Segl Seg2
[
Segll

The DEFINE PROGRAM and END PROGRAM statements define the beginning and end, respectively, of the
M AIN segment of the tree.

The DEFINE SEGMENT and END SEGMENT statements define the beginning and end, respectively, of the other
segmentsin the above tree.

Note that segments segl and seg2 are subordinate to MAIN at level 1. Segment segl1, at level 2, is subordinate to
segment segl.

2. The statements

OPEN SEGVENT " program xeq" , STATUS=CLD
READ SEGVENT MAI N

allow you to use the segment file created in Example 1.
3.7.66 OPEN WINDOW
Purpose:
Tells PROMULA to associate a user-defined window with a specific type of functional screen.

Syntax:

OPEN wi nd TYPE
Remarks:

wi nd is the identifier of the window that you wish to open. This window must be previously defined in a DEFINE
WINDOW statement.

TYPE isthetype of functional screen that will be shown in the window, and can be one of the following:

MAIN the Main Screen
PROMPT the Prompt Screen
COMMENT the Comment Screen
ERROR the Error Screen
HELP the Help Screen

Upon execution, the OPEN WINDOW statement will open the window called nane to serve as the display area for the
logical screen TYPE.

224



Promula Application Development System User's Manual

If wi nd is astatic window, it will be drawn on the screen upon execution of the OPEN. If wi nd is a popup window, it will
not be displayed until an operation requiring a screen of type TYPE is executed.

See also DEFINE WINDOW and CLEAR window statements as well as the discussion of Advanced Windows in this
chapter.

3.7.67 PLOT
Purpose:

Produces graphic displays of program variables and functions.
Syntax 1:
PLOT [type](varx,varyl[,vary2,...]) [,option]
Remarks:
There are five different syntaxesfor the PLOT statement, depending on what type of information you want to plot.

Syntax 1 produces X-Y line plots in which one or more Y variables are plotted against an X variable. The maximum
number of var ys that can be plotted simultaneously is six.

type isthetypeof line plot desired and may be one of the following:
LINE for aline plot
POINTS  for ascatter point plot
VALUES for aline plot with only those X-Y points marked that coincide with the intersections of the vertical
and horizontal tic mark/coordinates
If t ype is omitted, the result is aline plot with the points marked. If you have configured PROMULA's graphics
to do so, each line in LINE and VALUES plots will be shown in a different color, so that the lines may be
distinguished from one another. If only black and white graphics are available, the lines will have different
patterns. See Chapter 5, for a discussion of specifying line colors and patterns and other aspects of configuring
PROMULA graphics.
varx istheidentifier of the variable whose values are the x-coordinates of the points being plotted.
varyl istheidentifier of the variable whose values are the y-coordinates of the points on the first curve being plotted.
vary2 istheidentifier of the variable whose values are the y-coordinates of the points on the second curve being plotted.
varx andthe vary's must be subscripted by the same set
Syntax 2:
PLOT btype(varyl[,vary2,...]) [,option]
Remarks:
Syntax 2 produces bar plots in which one or more variables are used to form a display of bars whose lengths are
proportional to the magnitude of the variables values. The maximum number of variables that can be plotted
simultaneoudly is six. The number of bars displayed depends on the resolution of the monitor. The ROW descriptors of the

set that subscripts the first variable being plotted will appear as labels for the x-axis tic marks.

bt ype isthetype of bar plot desired and may be one of the following:

225



Promula Application Development System User's Manual

BAR for aparallel bar plot
STACK for a stacked bar plot

varyl istheidentifier of the variable whose values define the lengths of the first set of bars plotted.
vary?2 istheidentifier of the variable whose values define the lengths of the second set of bars plotted.

Syntax 3:
PLOT [type or btype] ([set:V,]tvar) [,option]
Remarks:
Syntax 3 produces plots of variables which are subscripted by a time series set. Both line and bar plots can be specified by
Syntax 3. The difference is that line plots can be generated without specifying a variable to scale the x-axis; the values of
the time-series set will be used to define the x-coordinates of the points being plotted.
type  specifiesthetype of line plot and is described above in Syntax 1.
bt ype specifiesthetype of bar plot and is described above in Syntax 2.

set:V isaspecia notation for the vector of values associated with the time series set, set .

tvar istheidentifier of avariable subscripted by atime series set.

Syntax 4:
PLOT [type or btype] (func) [,option]
Remarks:
Syntax 4 produces plotted displays of PROMULA functions. Both line and bar plots can be specified by Syntax 4. In line
plots, the X values of the function will be the x-coordinates of the points being plotted, and the Y values of the function will
be the y-coordinates. In bar plots, the X and Y values will be plotted on the same graph.
type  specifiesthetype of line plot and is described above with Syntax 1.
bt ype specifiesthetype of bar plot and is described above with Syntax 2.

func istheidentifier of afunction defined by the DEFINE FUNCTION or DEFINE LOOK UP statement.

Syntax 5:
PLOT Pl ECHART (vary) [, TITLE(text)]
Remarks:
Syntax 5 produces pie charts.
vary istheidentifier of the array variable whose values define the size of the sectors of the pie chart. Up to nine sectors

may be displayed on a given pie chart. The row descriptors of the set that subscripts vary will appear in a legend
for the chart, the percent of the pie for each sector will also be computed and displayed in the legend.

226



Promula Application Development System User's Manual

NOTE: Printing pie charts on some high resolution laser printers may not work because the image is too complex and
may overload the printer's memory.

PLOT Statement Options

Syntaxes 1 through 4 above, have an opti on parameter associated with them which alows you to customize the
appearance of the plot. The opt i on parameter is alist of additional specifications for the plot and may be one or al of the

following:

BROWSE(set 1, set2,...)

GRID=t ype

LEGEND(l eg1, l eg2,...)

LINE(pat 1, pat2,...)

OVER(set)

POINT(pnt 1, pnt2,...)

TITLE(t ext)

XLABEL (x! abel )

YLABEL (y! abel )

XRANGE(xr ange)

to alow the user to browse the "pages' of a plot of one or more multidimensional
arrays. If applicable, set 1 will be incremented/decremented by pressing F1/Shift-F1;
set 2 will be incremented/decremented by pressing F2/Shift-F2; and so on. A prompt
describing how to browse the plots will appear at the bottom of the screen.

to define agrid for the plot. Here, t ype is one of the following:

HORIZONTAL for horizontal lines between the tic marks on the Y -axis
VERTICAL for vertical lines between the tic marks on the X-axis
BOTH for horizontal and vertical lines

to define a legend for the plot. Here, 1 egl is a string variable or quoted string
containing a short legend for var y1, the first variable of the plot. | eg2 isalegend for
var y2, the second variable of the plot, and so forth.

to define aternative line patterns for unmarked line plots. Here, pat1 is a string
variable or quoted string containing 16 characters which defines a repeating pattern for
the var y1 line; pat 2 defines a repeating pattern for the var y2 line, and so forth. The
defaults are defined by PROMULA's graphics configuration program.

to automatically create a multi-line or multi-bar plot for a y-variable dimensioned by
set. Up to six lines or bars, one for each dataset corresponding to an active element of
set , will be displayed.

to define aternative line patterns for marked-point plots. Here, pnt 1 isa string variable
or quoted string containing 1 character which defines the character to use for marking
points of vary1; pnt2 defines a point character vary2, and so forth. The default
charactersare*, +, &, @, $, and #.

to display atitle for the plot. This title may include variables, text, and other formatting
characters according to the rules described in the WRITE text statement. The default
title is the descriptor of varyl. For plots of two or higher dimensional arrays, the
descriptors of all sets (except the set classifying the x-axis) dimensioning the variables
plotted are also part of the title. For plots of time series variables, the beginning and
ending values of the time interval associated with the time series are appended to the
title of the plot.

to display alabel for the x-axis. x| abel may include variables and/or quoted text. The
default is no x-label.

to display alabel for the y-axis. yl abel may include variables and/or quoted text. The
default is no y-label.

to define a scale for the x-axis. Here xr ange is one of the following:

227



Promula Application Development System User's Manual

Xxm n, xmax, xtics
Xm n, Xxmax
xtics

The XRANGE option will scale the x-axis from a minimum of xni n to a maximum of
xmax. xtics isthe number of tic-marks for the x-axis. The default values for xmi n,
xmax, and xtics are computed by PROMULA using the extremes of the variables
scaling the x-axis. The values may be literal numeric constants or numeric variables.

YRANGE(yr ange) to define a scale for the y-axis. The specification of yrange is analogous to the
specification of xr ange.

The values labeling the tic marks or legends of the plot may be formatted according to the syntax:

var:w d
wherewiswidth and d isthe number of decimal digits.
PROMULA supports four Graphics Modes.
CHARACTER The default for CHARACTER mode is an 80 column by 25 row monochrome plot that is composed
entirely of standard ASCII characters. The width and height of CHARACTER plots can be modified

by the SELECT WIDTH and the SELECT LINES statements. They can be sent to a disk file with
the SELECT OUTPUT statement.

MEDIUM The default for MEDIUM mode is CGA medium resolution three-color pixel graphics.
HIGH The default for HIGH mode is CGA high resolution monochrome pixel graphics.
PLOTTER The PLOTTER mode isintended to be used to define the manner in which graphics are plotted. The

default for PLOTTER mode is an IBM/Epson dot matrix printer, high resolution, landscape mode.
To specify the desired graphics mode, use the SEL ECT GRAPHICS statement.
You may change the default configuration for MEDIUM, HIGH, and PLOTTER graphics modes for your system, and
PROMULA even lets you create your own graphics configurations. See Chapter 5, for a discussion of configuring
PROMULA graphics.

To print medium- and high-resolution plots, execute the SELECT PRINTER=ON statement before you generate the plot;
the graphic will appear on the screen whileiit is being printed.

Examples:

In the code below, the procedure pl ot deno, when executed, produces plots of the following four types:
A point plot

A line plot with its points marked

A parallel bar plot
A stacked bar plot

Rl A

These four high-resolution plots are shown on the following pages.

DEFI NE SET
year (10)

228



Promula Application Development System User's Manual

END SET

DEFI NE VARI ABLE
yv(year) "Year Val ues”
ts(year) "Time Series Val ues” TYPE=REAL( 8, 1)
tl(year) "Log of the Time Series" TYPE=REAL(S, 1)
name "Run nane" TYPE=STRI N& 40)

END VARI ABLE

DEFI NE RELATI ON
ti me(year, yv)
END RELATI ON

READ yv

70 72 74 76 78 80 82 84 86 88

READ ts

3.1 3.23.94.55.14.9454140 3.5
tl = LN(ts)

DEFI NE PROCEDURE pl ot deno

PLOT PO NTS(yv,ts,tl),
XLABEL"T i me",
YLABEL" Ti ne Series Val ues",
TITLE"A Scatter Plot of Actual and Log Val ues",
LEGEND( " Absol ut es", "Log of Absol ute")

PLOT(yv,ts,tl),
XLABEL"T i me",
YLABEL"Ti ne Series Val ues",
TITLE'An XY Plot with Marked Cbservations O the Absolute and Log",
LEGEND( " Act ual val ue","Log of Val ue")

PLOT BAR (ts,tl),
XLABEL"T i me",
TITLE"A Parall el Bar Chart of Actual and Log Val ues of a Tine Series",
LEGEND( " Act ual ", "Log")

PLOT STACK(ts,tl),
XLABEL"T i me",
TITLE"A Stacked Bar Chart of Actual and Log Values of a Tine Series"
LEGEND( " Act ual ", "Log")

END PROCEDURE pl ot deno

A Point Plot

A LinePlot With Its Points Marked

A Parallel Bar Plot

A Stacked Bar Plot

229



Promula Application Development System User's Manual

The code below generates a pie chart of variabley. PROMULA pie charts can have up to nine sectors. The variable that has
aROW relation to the set subscripting the variable being plotted will be used for the legend. The percentage of each sector
isautomatically calculated and displayed.

DEFI NE SET
pnt (9)
END SET
DEFI NE VARI ABLE
x(pnt) "X Val ues"
y(pnt) "Y Val ues” TYPE=REAL( 8, 2)

pntn(pnt) "Point Nanmes" TYPE=STRI NG 15)
pntl (pnt) "Point Legend" TYPE=STRI NG 15)
END VARI ABLE

x(i) =
y(i) =i * 10
READ pnt n: 4

GEJ FKG MEJ LCC DLY USA | QU PRM XEQ

DEFI NE PROCEDURE t est
pntl=pntn+" = "+y
SELECT ROW pnt, pntl)
PLOT PI ECHART(y) TITLE("PIE CHART OF VAR ABLE Y")
SELECT ROW pnt, pntn)
END PROCEDURE t est

A PieChart

PROMULA supports two-dimensional graphics, and variables specified in the plot will usually be one-dimensional vectors.
If you want to plot two- or higher-dimensional arrays, you should follow these guidelines:

1. Reduce two- or higher-dimensional variables to a one-dimensional form by selecting a single value for al the sets
structuring the variables being plotted except the one you wish to use as the x-axis of the plot.

PROMULA can determine which sets have been restricted and which have more than one active element. When the
variables are plotted, the values of variable var x across the set with more than one active element will be used to scale
the x-axis and the descriptors of the other sets will appear in a subtitle for the plot.

2. For X-Y plots (Syntax 1), the Y variables should al be structured by the set that will scale the X axis.
The following example illustrates how PROMULA handles array variables with more than one dimension in plots.

DEFI NE SET
row(10) "10 row'
col (6) "06 col"
pag( 2) " 04 pag”
END SET

DEFI NE VARI ABLE
x(row, col , pag) TYPE=REAL(10,0) "X MATRI X"
y(row, col , pag) TYPE=REAL(10,0) "Y MATRI X"
END VARI ABLE

x(i,j,k)=(i+10*j +100*k)/ 10
y(i,j,k)y=(i*j*k)

DEFI NE PROCEDURE pl ot arr
SELECT GRAPHI CS=HI GH
SELECT row* col (3) pag(2)

230



Promula Application Development System User's Manual

PLOT LINE(x,y) TITLE("PLOT OF X=(i+10*j+100*k)/10 versus Y=(i*j*k)")
PLOT BAR (x,y) TITLE("BAR PLOT OF X=(i+10*j+100*k)/10 and Y=(i*j*k)")
SELECT row(2) col* pag(2)
PLOT LINE(x,y) TITLE("PLOT OF X=(i+10*j+100*k)/10 versus Y=(i*j*k)")
PLOT BAR (x,y) TITLE("BAR PLOT OF X=(i+10*j+100*k)/10 and Y=(i*j*k)")
END PROCEDURE pl otarr
The resultant plots are shown on the following pages.

In the first two plots, the ranges of sets col and pag are restricted to single values, so the values of variable x as
subscripted by set r ow are used to scale the x-axis.

In the next two plots, the ranges of sets row and pag are restricted to single values, so the values of variable x as
subscripted by set col are used to scale the x-axis.

3.7.68 RATE

Purpose:

Isused in dynamic simulation procedures and has two functions.

1. Itsignalsthe start of the RATE section of a dynamic procedure.

2. It declares the time dependent variables to be computed at each time point of the simulation by linear interpolation or
extrapolation from specified exogenous time series variables.

Syntax:

RATE (etsl = 1lvl [, ets2 =1v2, ...] )
Remarks:
etsl isanexogenoustime seriesvariable (i.e., an array variable indexed by atime series set.)

vl isalocal variable that is used explicitly in the RATE section of a dynamic procedure model and is computed at
every time point of the simulation.

ets2 isthe exogenoustime series variable for a second RATE statement equation.
Iv2 isalocal variable for asecond RATE statement equation.

The equations of the RATE statement form a list of correspondence between previoudy defined exogenous time series
variables and time-dependent variables that must be used locally in the RATE section of a dynamic simulation model.

Based on this equivalence, the values of the local variable will be computed at the arbitrary time point of the dynamic
simulation by linear interpolation or extrapolation that is based on the fixed time points defining the exogenous time series.

The RATE section is the second section of a dynamic model (after the INITIAL section) and its equations are eval uated at
each time point (or interval) of the simulation run. In contrast to LEVEL equations, both sides of rate equations are
evaluated at the same time point (or interval).

The LEVEL section follows the RATE section and its equations are also evaluated at each time point (or interval) of the
simulation. The LHS of each LEVEL equation, however, is evaluated at TIME+DT in terms of the time variables on the

231



Promula Application Development System User's Manual

RHS which are evaluated at TIME, the previous time point (or interval). It is the equations of the LEVEL section which
move the dynamic variables through time.

Only those exogenous time series that are used explicitly in the RATE or LEVEL section need be included in the
exogenous variables list of the RATE statement.

The RATE statement may only be used inside a procedure. That is, it must not be used in command mode.

For more information on dynamic simulation with PROMULA, see the discussion of Dynamic Procedures in the
DEFINE PROCEDURE section of this chapter and the discussion of the LEVEL statement.

3.7.69 READ DISK

Purpose:
Transfers datafrom adisk variablein an array file to alocal variable in the dynamic access method.

Syntax:

READ DI SK(var s)
Remarks:
vars isalist of dynamic variables.

A dynamic variable is a scratch or fixed variable (also called a local variable) that has a dynamic relationship to a disk
variable. Local variables may be related to disk variables through the DI SK option of the DEFINE VARIABLE statement.
See chapter 4 for a detailed description of disk access methods.

Examples:

The following code

DEFI NE FI LE
filea
END FI LE

OPEN filea "test.dba" STATUS=NEW
DEFI NE SET

rec(1000) "Record"
END SET

DEFI NE VARI ABLE fil ea
dsk(pnt), "A Disk Variable on 'filea"
END VARI ABLE fil ea

DEFI NE VARI ABLE

pp "Record Pointer"

scr "A dynamic variable for accessing a single elenment of dsk", D SK(fil ea, dsk(pp))
END VARI ABLE

defines two variables: dsk and scr. The disk variable, dsk, is a vector of 1000 elements on the disk file named
t est. dba. The variable, scr, is a dynamic local variable that is related to dsk. The READ DISK and WRITE DISK
statements transfer a specific value from and to disk asillustrated in the dialog below.

scr =0
dsk(i) =i
pp = 4

READ DI SK(scr)

232



Promula Application Development System User's Manual

WRI TE scr

A Scratch Variable in Menory 4
scr = 6

WRI TE DI SK(scr)

WRI TE (dsk:L," ", dsk(pp))
A Disk Variable on 'filea' 6

3.7.70 READ file

Purpose:

Read data from atext file or arandom file.

Syntax 1. Read the values of all variablesin arecord of arandom file

READ file

Syntax 2: Read from atext file

READ file (varl [,fmt1] [,var2 [,fmt2]] [...] )
Remarks:
file istheidentifier of thefile whose records you are reading.
varl istheidentifier of the variable whose dataisfirst on each data record.
fnmt 1l istheformat specification for var 1 and has the following syntax:
\p:w
where
p isan integer indicating the starting column on each data line where the value for var 1 begins. Thus, the
backdash means: "start reading in column p". If omitted, the reading beginsin column 1.
w isan integer indicating the width of the value and it means "read the next w columns". If omitted, the default
width is the width specified in the definition of var 1.
The format specification may be omitted, in which case the data may be entered in free form. In free form, the
values of variables may be entered anywhere on an input line provided they are separated by commas or blanks.
var2 istheidentifier of the variable whose datais second on each data record.
fnt2 isthe format specification for var 2 and may have the same form as f nt 1 above. If p is omitted from f nt 2,
reading begins in the column following the last character of the last value read.
Examples:

1. Read from atext file and write to arandom file

DEFI NE FI LE
txt1l TYPE=TEXT

233




Promula Application Development System User's Manual

ranl TYPE=RANDOM
arrl TYPE=ARRAY
END FI LE

OPEN ranl "ranl.ran", STATUS=NEW
DEFI NE VARI ABLE ranl
itenl "ltem 1" TYPE=REAL( 8, 0)
iten2 "ltem 2" TYPE=STRI N& 8)
itenB "ltem 3" TYPE=DATE( 8)
END VARI ABLE ranl

OPEN txtl "txtl.txt", STATUS=OLD

DO txt1l
READ txt 1(itenil: 8,itenR: 8,itenB: 8)
WRI TE ranl

END txt1

Read from atext file and write to an array file

DEFI NE SET
rec(100) "Records"
END SET

OPEN arrl1l "arrl.arr", STATUS=NEW
DEFI NE VARI ABLE arr1

varl(rec) "Variable 1" TYPE=REAL( 8, 0)
var2(rec) "Variable 2" TYPE=STRI N& 8)
var3(rec) "Variable 3" TYPE=DATE( 8)

END VARI ABLE arr1

DEFI NE VARI ABLE
rn "Record Number"”
END VARI ABLE

rn =1

DO txt1l
READ t xt 1(var1(rn):8,var2(rn):8,var3(rn):8)
rn = rn+l

END txt1

Read from arandom file and write to atext file
DO ranl

WRITE txt1(itentl: 8,itenR: 8,itenBd:8)
END ranl

Read from arandom file and write to an array file

rn =1

DO ranl
varl(rn) = itenl
var2(rn) = itenR
var3(rn) = itenB
rn = rn+l

END ranl

Read atwo-dimensional array from atext file using a DO set loop to drive the row dimension and a set identifier in the
read statement to drive the column dimension. Given the following datafile (with physical file namesm. t xt ):

11 15 11 17 10 12 10 14 20 25 27 28
22 31 50 32 41 19 21 17 19 38 56 67

234




Promula Application Development System User's Manual

47 57 73 55 72 38 27 19 35 51 79 76
156 211 267 203 273 155 109 89 142 230 286 264
494 620 730 646 775 504 433 402 525 760 817 734
478 496 468 539 499 521 493 481 592 623 618 584

The following code will read the two dimensional data set.

DEFI NE FI LE
i npt "Data Input File" TYPE=TEXT
END FI LE

DEFI NE SET

st rat um 6) "6 Usage Strata”

nont h(12) "12 Mont hs"
END SET
DEFI NE VARI ABLE

sm(stratum nonth) "Custonmers by Stratum and Month" TYPE=REAL(12, 0)
END VARI ABLE
OPEN i npt "smn.txt" STATUS=0LD
DO stratum

READ i npt ( (month) (sm: 6:0(stratumnonth)))

END stratum

CLEAR i npt

3.7.71 READ function
Purpose:

Reads values into a function.

Syntax:

READ func
x1 X2 ... Xxn

yly2 ... yn
Remarks:
func isthe identifier of afunction defined by aDEFINE FUNCTION or DEFINE L OOK UP statement.
x1 x2 ... xn arevauesto beread into the X variable of the function.
yl y2 ... yn arevauestobereadintotheY variable of the function.

Examples:

DEFI NE SET

pnt (4)
END SET

DEFI NE VARI ABLE
x(pnt) "The X val ues"
y(pnt) "The Y val ues"
END VARI ABLE

235



Promula Application Development System User's Manual

DEFI NE FUNCTI ON
fx(x,y) "Y=f(x)"
END FUNCTI ON

READ f x
10 20 30 40 50 60
101 202 303 404 505 606

Given the above definitions, the value of the function and its X and Y value vectors may be displayed via WRITE
statements as shown in the dialog below.

VWRI TE fx
(1) (2)
PNT( 1) 10 101
PNT( 2) 20 202
PNT( 3) 30 303
PNT( 4) 40 404
VRI TE x
The X val ues
PNT( 1) 10 PNT(2) 20  PNT(3) 30 PNT(4) 40
WRI TE y
The Y val ues
PNT( 1) 101 PNT( 2) 202 PNT( 3) 303 PNT( 4) 404

3.7.72 READ menu
Purpose:

Displays a"data" menu to let you "read" valuesinto all the data fields of the menu. This command is used when the values
of all the data fields in the menu are to be changed.

A data menu is a screen display which is designed to help its user to edit data. The fields in a data menu are previously
defined in a DEFINE M ENU statement.

Syntax:
READ nenu(vars)
Remarks:

menu istheidentifier of adata menu.

vars isalist of variable identifiers that contain the values of the data fields being edited. The variables in the list must
be arranged in the same order as the data fields in the menu to which they correspond.

Data menus contain a number of data fields to be edited by the user. In the DEFINE MENU statement, each data field is
denoted by a series of contiguous "at signs', (@), or tilde signs (~), one for each character of the data value. The data fields
are ordered from left to right and from top to bottom of the menu template.

Upon execution, the data menu becomes a screen display that has the first data field highlighted by the bounce bar. The
system is now in edit mode and is ready to accept new data for the data fields in the menu. To begin editing of the first

236




Promula Application Development System User's Manual

highlighted data field, press the [Enter] key and enter the new value as prompted at the bottom of the menu. Continue this
process until all the data fields have been edited.

Remarks:
The use of the READ menu command is similar to the EDIT menu command, except that the READ menu puts the user
in batch or automatic edit mode where he/she is not allowed to pick the data fields to edit. He/She must edit the data fields

sequentialy and in the order that they appear on the menu. After the last field is edited, execution of the program
automatically proceeds with the statement following the READ menu statement.

3.7.73 READ SEGMENT

Purpose:

Reads an executable program segment into your working space for execution. A program segment includes both code and
data. To read data values only, use the READ VAL UE segment statement.

Syntax:
READ SEGMVENT seg [, DQ(proc)]
Remarks:

seg is the identifier of the segment as it appears on the corresponding DEFINE SEGMENT and END SEGMENT
statements. The default identifier of the top segment of any programis M AIN.

proc istheidentifier of aprocedurein seg. Upon execution, this procedure is executed automatically.
The segment seg isread in from the disk file specified on the OPEN SEGMENT statement.
Examples:

The following statements open and read in for execution the segment seg1:

OPEN SEGVENT "a: program xeq", STATUS=0OLD
READ SEGVENT segl

If segment seg1 is subordinate to another segment, say M Al N, then the following sequence must be entered:
OPEN SEGVENT " program xeq" STATUS=CLD
READ SEGVENT MAI N
READ SEGVENT segl

where pr ogr am xeq isthe name of the segment file on disk containing segment M AIN.

3.7.74 READ set
Purpose:

Reads in labels for a set.

Syntax:

READ set [opt]
data

237



Promula Application Development System User's Manual

Remarks:

set isthe set identifier.

data arethedatalinesfor theread. One dataline is needed for each active element in set .

opt defines what types of labels are to be read. The default value for opt is ROW(1,20). opt can be one or more of the

following:
ROWI|(i c, | ¢)]
to specify that set row descriptors (sometimes called stubs) are to be read.

i c isapositive integer defining the initial column on each data line where the stub entry begins. The default is
ic=1.

I c isa podtiveinteger (I ¢ > or =i c) defining the last column on each data line where the stub entry ends. The
defaultis| c=15.

Only one stub per data line is permitted. Note that, if set was defined with a ROW option, the total width of the
field may not exceed the width defined in that option.

COLUMN([(i c, I c, nc)]
to specify that set column descriptors (sometimes called spanners) are to be read.

i c isapositive integer defining the initial column on each data line where the spanner entry begins. The default
isi c=1.

I c isapositiveinteger (I ¢ >or = ic) defining the last column on each data line where the spanner entry ends.
The default is| c=15.

nc is a positive integer defining the number of columns or characters (including blanks) in each section of the
spanner. The following exact relationship must be satisfied:

(lc - ic + 1)/nc = nl

where nl isapositive integer denoting the number of lines that each column heading will have. The default is
nc=1.

The specificationic, |c, nc canberead as, "read in each spanner from column i ¢ to column | ¢ in steps of
nc." Thus if i c=1, | ¢c=30, nc=10, each data line should contain 30 characters that will form a three line
(nl =(30-1+1)/ 10=3) column heading with 10 characters on each line.

Only one spanner per data line is permitted. Note that, if set was defined with a COLUM N option, the format of
the spanner data field must conform with the format specified in that option.

KEY[(i c, I c)]
to specify that set codes are to be read.

i ¢ isapositive integer defining the initia column on each data line where the code entry begins. The default is
ic=1.

238



Promula Application Development System User's Manual

I c isapositiveinteger (Ic > or = ic) defining the last column on each data line where the code entry ends.
The default is| c=20.

Only one code descriptor per data line is permitted. Note that if the set was defined with a KEY option, the total
width of the code field may not exceed the defined width.

The set codes are used for three separate purposes. First, if no row descriptors are supplied, then the codes are used
in their place for displays of arraysthat are classified by set . Second, if no column headings are supplied, then the
codes are used. Third, when the user wishes to refer to particular set elements, he may use the codesin place of the
element sequence numbers. See the ASK...ELSE and SELECT VARIABLE statements for a discussion of how
set elements are selected with their codes and sequence numbers.

Only one code per data line is permitted. Note that, if set was defined with a KEY option, the total width of the
field may not exceed the width defined in that option. The maximum width of acodeis 6 characters.

Examples:

The following example illustrates the READ set statement. Stubs, spanners, and codes are read in for set st a; the codes
appear as the identifiers of the set elements in the WRITE set display. Notice that the default, AGE( n), descriptors are
used as labels for columns classified by set age since no spanners or codes are related to set age. Set yer getsits descriptor
values from the TIM E option in its definition.

DEFI NE SET

age( 3) "AGE"  ROWSB8)

yer (2) "YEAR' Tl ME(1920, 2000)

sta(3) "STATE" ROW10) KEY(2) COLUMN( 10, 3)
END SET

DEFI NE VARI ABLE

a(age, sta, yer) "VALUES BY AGE, STATE, AND YEAR'
END VAR ABLE
a=RANDOM 2000, 9000)

READ sta KEY(21,22) RON21,29) COLUMN(1, 30, 10)

STATE OF CH O
STATE OF FLORI DA
STATE OF ILLINO S
READ age ROW 1, 6)

00- 20

21-40

41- 60

Given the definitions and data above, the values for the set 1abels may be displayed by the various WRITE statements as
shown in the dialog below.

WRI TE sta

Identifier Description
OH OH O

FL FLORI DA

IL I LLINO S

SELECT yer (1)
WRI TE a
VALUES BY ACE, STATE, AND YEAR

1920

239




Promula Application Development System User's Manual

STATE STATE STATE

CF CF CF

OH O FLORIDA [LLINOS

00- 20 5, 160 7,664 6, 141
21-40 6, 456 2,334 5, 625
41-60 7,295 2,024 7,480

WRI TE a(st a, age, yer)
VALUES BY AGE, STATE, AND YEAR

1920

AGE(1) AGE(2) AGE(3)

OHI O 5,160 6,456 7,295
FLORI DA 7,664 2,334 2,024
ILLINO S 6,141 5,625 7,480

See the DEFINE SET, DEFINE RELATION, and SELECT RELATION statements for more information on set
descriptors.

3.7.75 READ VALUE segment

Purpose:

Reads the information of a program or program segment from disk. Only the values of the segment variables are read. To
read both code and data values, use the READ SEGMENT statement.

Syntax:

READ VALUE seg
Remarks:
seg isthe identifier of the segment whose val ues are being read from disk.
Use the OPEN SEGMENT statement before using the READ VAL UE segment statement.
Examples:

The code below opens a segment file on disk called wr val seg. xeq. This segment is given the default name M AIN since it
isatop-level segment. Segment M AIN contains the single variable, a.

OPEN SEGMENT "wrval seg. xeq" STATUS=NEW

DEFI NE PROGRAM
DEFI NE VARI ABLE
a "The value of variable A ="
END VARI ABLE
END PROGRAM

The effect of the WRITE VALUE segment and READ VALUE segment areillustrated in the dialog below.

a=10
WRI TE a
The val ue of variable A = 10

240



Promula Application Development System User's Manual

The statement, WRITE VALUE MAIN, writes the values of segment MAIN variables (in this case only variable a) in the
segment file on disk called wr val seg. xeq.

WRI TE VALUE MAI N

The value of a variable can be changed by an expression.

a=20
VWRI TE a
The value of variable A = 20

The READ VALUE MAIN statement will read in the values of the segment M AIN's variables that were stored by the last
WRITE VALUE MAIN statement.

READ VALUE NAI N
VWRI TE a
The value of variable A = 10

3.7.76 READ variable
Purpose:

Reads datainto a variable.

Syntax:
READ var [fnt] [(sets)] [FROMfile]
data
Remarks:
var isthe identifier of the variable whose data is being entered.

sets isanordered list of the identifiers of the sets subscripting var . The sets may be listed in any order. If omitted, the
order of the sets is that which appears in the definition of var. For multidimensional variables, this order is
important: the first set in this list defines the rows of the data following, the second set classifies the columns of
the data following, the third set classifies the two-dimensional pages of the data following, the fourth set classifies
the three-dimensional sections of the data following, etc. The current order and range of the elements of the sets
specified in set s controls the assignment of datato variable values.

fnt isthe format specification for the read operation and has the following syntax:
\p:w

where

241



Promula Application Development System User's Manual

p isaninteger indicating the starting position of the read, i.e, the column on each data line where the reading
begins. The backslash means: "start reading in column p". If omitted, the reading beginsin column 1.

w isaninteger indicating the width of the read operation and it means "read the next w columns”.

The format specification may be omitted, in which case the data may be entered in free form. In free form, the
values of variables may be entered anywhere on an input line provided they are separated by commas or blanks.

data are the data values associated with var . The data values are entered on input lines which can have a maximum
width of 255 characters each. The input lines and the data values on them must be arranged so that they agree with
the internal structure of the variable, as defined by the DEFINE VARIABLE statement or by sets, and the
format specifications of the READ variable statement (see examples below). The data may be stored in an
external text file if the FROM option is used.

file istheidentifier of alogica file of type TEXT that contains the data for variable var . You must openfi | e to the
text file on disk that contains the data before executing the READ variable statement.

Y ou may read data for more than one variable in a single read operation by using the READ variables statement.
Examples:
1. Given the definitions

DEFI NE SET
row(4)
col (3)
page(2)

END SET

DEFI NE VARI ABLE
a(row, col , page) "A 3-Dinensional Array"
END VARI ABLE

You may enter datain array a viathe following READ statement:

READ a

111 121 131
211 221 231
311 321 331
411 421 431
112 122 132
212 222 232
312 322 332
412 422 432

This order of the data entry is according to the order of the sets defining array a. You may verify this by using the
VRl TE a statement:

WRI TE a
A 3-Di mensi onal Array
PAGE( 1)
CoL(1) COL(2) COL(3)

ROW( 1) 111 121 131
ROW( 2) 211 221 231

242




Promula Application Development System User's Manual

RO 3) 311 321 331
ROW 4) 411 421 431
PAGE( 2)

COL(1) ©OL(2) COL(3)

ROW( 1) 112 122 132
ROW( 2) 212 222 232
ROW( 3) 312 322 332
ROW( 4) 412 422 432

2. Youmay read by col the same dataasin Example 1 by using the following statement:

READ a(col, row, page)
111 211 311 411
121 222 321 421
131 231 331 431
112 212 312 412
122 222 322 422
132 232 332 432

3. You may read selected data values by using the SELECT set statement before the READ statement:

SELECT row(1)
SELECT page(1)
READ a

111 121 131

This read operation is restricted to the first r ow and the first page of variable a. The values 111, 121, and 131 are
assigned to the first, second, and third columns respectively.

4. Asisthe case for other READ statements, numeric data values may be specified with the N* VAL UE notation asin the
example below.

DEFI NE SET
row(3)
col (10)

END SET

DEFI NE VARI ABLE
x(row, col ) TYPE=REAL(11,3) "------c-mmnn-- THE X ARRAY - --cmcmmmnn- "
END

READ x

2*1 2*2 2*3 2*4 2*5

2*6 2*7 2*8 2*9 2*10
2*11 2*12 2*13 2*14 2*15

The data values may be displayed by the statement WRI TE x. The output of this statement is shown below.

-------------- THE X ARRAY --------------

coL(1) coL( 2) coL( 3) COoL( 4) COL( 5)

ROW( 1) 1. 000 1. 000 2. 000 2. 000 3. 000
ROW( 2) 6. 000 6. 000 7. 000 7. 000 8. 000
ROW( 3) 11. 000 11. 000 12. 000 12. 000 13. 000

243




Promula Application Development System User's Manual

COL( 6) COL(7) COL( 8) COL(9) COL( 10)
ROW 1) 3. 000 4. 000 4. 000 5. 000 5. 000
ROW( 2) 8. 000 9. 000 9. 000 10. 000 10. 000
ROW( 3) 13. 000 14. 000 14. 000 15. 000 15. 000

3.7.77 READ (variables)
Purpose:

Read data into more than one variable.
Syntax:
READ(var 1[,fmt 1] [(sets)] [,var2[,fm2][(sets)] [,.-..])
data
Remarks:
varl istheidentifier of the variable whose dataisfirst on each dataline.
fnmt 1 istheformat specification for var 1 and has the following syntax:
\p:w
where

p isaninteger indicating the starting column on each data line where the value for var 1 begins. The backslash
means. "start reading in column p". If omitted, the value beginsin column 1.

w isan integer indicating the width of the value and it means "read the next w columns." If omitted, the default
width isthe width of var 1 as specified in its definition.

The format specification may be omitted, in which case the data may be entered in free form. In free form, the
values of variables may be entered anywhere on an input line provided they are separated by commas or blanks.

sets isanordered list of the identifiers of the sets subscripting var 1. The sets may be listed in any order. If omitted, the
order of the setsis that which appears in the definition of var 1.

var2 istheidentifier of the variable whose data is second on each dataline.
fnt2 istheformat specification for var 2 and may have the same form asf nt 1 above. Here, if the format specification,

p, isomitted, reading begins at the character immediately following the last character of the preceding value.

data arethedatavaluesforvarl, var2,.... The datavaluesareentered oninput lines which can have a maximum
width of 255 characters each. Numeric data may be expressed using the N* VAL UE notation.
The DO set statement may be used with the READ variables statement to read data for array variables.

Examples:

244




Promula Application Development System User's Manual

Given the definitions

DEFI NE SET
nmont h( 12)
END SET

DEFI NE VARI ABLE
A
B
C
D
nc( nont h)
mm( nont h)
END VARI ABLE

"A Val ue
"B Val ue
"C Val ue
"D Val ue

"Mont h Codes"
"Mont h Nanmes"

you may enter the values 1 and 200, for A and B respectively, asfollows:

READ( A: 8, B\ 10: 10)

1

200

The following reads data for the vectors nc and m:

DO nont h

READ( nt: 3, m\ 5: 12)

END nont h
JAN January
FEB February
MAR March
APR April
MAY May

JUN June

JUuL July

AUG August
SEP Sept enber
OCT Cctober
NOV  Novemrber
DEC Decenber

The following read uses the N*VVAL UE notation to specify repeated valuesin the data.

READ( A, B, C, D)

2* 1234567 2*9876543

After the read, the data may be displayed by aWRITE TABLE statement. For example the statement

WRI TE TABLE(1) BODY(a, b, c,d) TITLE("Table of scalars") FORMAT(10, 20)

produces the following output.

A Val ue
B Val ue
C Val ue
D Val ue

Tabl e of Scal ars

1, 234, 567
1, 234, 567
9, 876, 543
9, 876, 543

245




Promula Application Development System User's Manual

3.7.78 RUN
Purpose:

Compilesa PROMULA source file or runs a PROMULA executable.

Syntax:

RUN file
Remarks:

file isastring (optionally in quotes) or a string variable containing the name of the disk file where the code that you
wish to compile or execute is stored.

The RUN statement is similar to the RUN PROGRAM statement for executing PROMULA programs from inside a
running application; and to the RUN COMPILER, RUN SOURCE, and RUN COMMAND statements for compiling
PROMULA source codes. But there are severa subtle differences:

RUN and RUN PROGRAM may both be used to run PROMULA executable programs. When fi | e is an executable
PROMULA application, the RUN statement will suspend execution of the current application and hide its information
before running fi | e. Since the current application stays resident, there must be enough room for both fil e and the
origina application in memory for this to work properly. The original application will be automatically reloaded when
execution of fil e is complete and a STOP statement is executed. The RUN PROGRAM statement, clears the original
application from memory before loading fil e. In addition, RUN can be executed from inside a procedure; RUN
PROGRAM cannot.

RUN and RUN COM PILER may both be used to compile PROMULA source codes. Whenfi | e isa PROMULA source
code, the RUN statement will suspend execution of the current application and hide its information before compiling fi | e.
The original application will be automatically reloaded when compilation of fi | e is complete and a STOP statement is
executed. The RUN COMPILER statement clears the current application from memory before compiling file. In
addition, RUN can be executed from inside a procedure, RUN COM PIL ER cannot.

The RUN SOURCE fi | e statement can be used for compiling PROMULA source codes only. It behaves like the RUN
statement in this role except that RUN SOURCE displays the compilation listing on the screen.

The RUN COMMAND fil e statement can only be used for compiling PROMULA source codes. RUN COMMAND
behaves like the RUN statement except that it does not suspend execution of the current application or hide its information.
The statementsin fi | e may use, but not redefine, structures defined in the current application, and any structures defined
infile remain resident with your application after its compilation is complete and control is returned to the current
application.

Examples:
The statement
RUN " program prmn'
will compile the PROMULA program stored in the source file pr ogr am pr m The compilation listing will not be shown on

the screen but PROMULA will pause on errors. To have more control over the compilation of PROMULA source codes
from the command line, use the RUN COM PILER statement.

3.7.79 RUN COMMAND

Purpose:

246



Promula Application Development System User's Manual

Compiles a PROMULA source code from within a running application. This allows you to temporarily perform equations,
read in data, and define procedures, variables and other PROMULA structures while running a PROMULA application.
The RUN COM M AND gives you the means to execute a batch file of statements from command mode.

Syntax:
RUN COMVAND fil e

Remarks:
file isaquoted string or astring variable that contains the name of atext file containing PROMULA statements.

Upon execution, PROMULA will compile the code contained infi | e. If the code is well formed and compatible with the
current application (i.e., no redefinitions), the new executable code will become resident with the current application.

Using this statement is like escaping the current application and using PROMULA in command mode. The main
differences are (1) PROMULA reads the statements from a text file instead of from the keyboard, and (2) statements are
executed in batch mode.

If you want to add any interactive input or output statements to the running application, you should put them in a procedure
in a file, then process the file using the RUN COMMAND statement. The procedure may then be executed by escaping
from your application, getting into command mode (F10 from the Main Menu), and entering the procedure name.

WARNING: |If thereisa DEFINE PROGRAM statement infi | e, you will clear the current application from memory
and replace it withthe codeinfi | e.

The last statement in fi | e should be a STOP. This will get you out of batch compilation mode and return control to the
calling program.

Examples:

The source code of PRVR. PRMis shown below. It defines two variables: ¢ and d. The STOP statement returns control to
the calling program.

DEFI NE VARI ABLE
Cc

d

END

STOP

The variables defined in PRV2. PRM can be batch loaded using the code shown below. The code below defines two
variables. a and b, and a procedure, r uncnd that runs PRV2. PRM

DEFI NE VARI ABLE
a

b

END

DEFI NE PROCEDURE r uncnd
RUN COVMAND " pr 2. pr m'
AUDI T VARI ABLE

END PROCEDURE r uncnd

Execution of procedurer uncnd produces the following dialog.

DO runcnd

247



Promula Application Development System User's Manual

| dent Description

The AUDIT VARIABLE statement in procedure r uncnd shows that variables ¢ and d are now present with variables a
and b. Other PROMULA structures, including procedures, can be added using similar code.

3.7.80 RUN COMPILER
Purpose:
Compilesa PROMULA source code.

Syntax:

RUN COWPI LER source LI ST = out put PAUSE = option
Remarks:

sour ce is a string (optionally in quotes) or a string variable containing the name of the file to be compiled (the
extension .PRM is assumed if none is specified).

out put directs the compilation listing and is one of the following
NONE to turn off the listing; this option provides the fastest compilations.
CONSOLE to display the listing on the screen.

DISK file to save the listing on disk. fi | e is a string or a string variable containing the name of the
file where the listing is to be saved.

PRINTER to send the listing to the printer.

option controls whether or not PROMULA should pause compilation when an error is detected and is one of the
following:

ON to issue an error message and pause on errors

OFF to issue an error message and continue on errors

EJECT to end processing and return to the operating system on errors

The RUN COMPILER statement clears the current application from memory before compiling fi | e. Control returns to
PROMULA command mode when the compilation is complete.

The RUN COMPILER statement cannot be executed inside a procedure.

Examples:

The statement

248




Promula Application Development System User's Manual

RUN COWPI LER "program prnf LI ST=DI SK "program | st" PAUSE=ON
will compile the PROMULA code stored in pr ogr am pr n the compilation listing will be saved in program | st .
3.7.81 RUN DOS
Purpose:

Runs an operating system command. This allows you to access the operating system from within a PROMULA program,
perform an OS operation, and return to your program.

Syntax:

RUN DOS conmand
Remarks:
command  isaquoted string or a string variable containing any command that is valid for your operating system.
When the RUN DOS statement is executed, PROMULA will write itself and the current application to disk in afile called
PROM UL A.0Q0; this is often a rather large file (300-500 Kbytes). PROMULA then clearsitself from RAM and proceeds
with the OS command. When the OS command finishes, PROMULA reloads itself, deletes the PROM UL A.000 file and
returns to the application. Note, on machines with a virtual operating system where much more memory is available,
PROMULA will not writeitself to disk.
Y ou should not use the RUN DOS statement to load RAM resident programs.

Be warned that some uses of the RUN DOS statement are inherently non-portable and your application may require source
code changesiif it is moved across the various platforms on which PROMULA runs.

Examples:
The statement
RUN DCS "dir b:"
will produce a directory listing for the files on drive b:
Similarly, the statement
RUN DCS "edit nyfile.txt"
will run the program edi t with acommand line argument of nyfile.txt.
3.7.82 RUN EDITOR
Purpose:

Loads afileinto the PROMULA Text Editor for editing.

Syntax:

RUN EDI TOR [fi |l enane]

Remarks:

249



Promula Application Development System User's Manual

filename isastring (optionally in quotes) or a string variable containing the name of the text file you wish to edit. This
name is the file specification you use to identify the file to the operating system.

Upon execution, the text file is brought into your work space for editing using the text editor. The normal text colors for the
Main Screen will be used by the editor.

You may also use the editor while running a PROMULA application by pressing the Esc key to interrupt the application
and, then selecting Main Menu option 4, load the editor.

NOTE: The amount of memory (capacity) available to the text editor is limited by the amount of memory used by the
application you are running. Thus, if you want to edit avery largefile, it is best to clear your application from
memory before using the editor.

Examples:

1. The statement RUN EDITOR demo.prm or RUN EDITOR " demo.prm" will load the file demo. pr minto the editor
for editing.

2. Similarly, the following statements will bring deno. pr minto your work space for editing.

DEFI NE VARI ABLE
fname TYPE=STRI N& 20)
END VARI ABLE

f nane="deno. prnt
RUN EDI TOR f nane

Where f name isastring variable.
3.7.83 RUN PROGRAM
Purpose:

Runs a PROMULA executablefile.

Syntax:
RUN PROGRAM fi | e

Remarks:

file isastring (optionaly in quotes) or a string variable containing the name of the file where the program that you
wish to execute is stored (the extension .XEQ is assumed if none is specified).

The RUN PROGRAM statement clears the current application from memory before executing fi | e. Control returns to
PROMULA command mode when the execution of fi | e iscomplete. Alternatively, a STOP PROMULA statement in the
application may be used to exit to the operating system.

The RUN PROGRAM statement cannot be executed inside a procedure.

Examples:

The statement

RUN PROGRAM " pr ogr am xeq"

250



Promula Application Development System User's Manual

will clear the current application from memory and execute the PROMULA program stored in the executable file
program xeq.

See the RUN statement for more information on PROMULA's run statements.

3.7.84 RUN SOURCE

Purpose:
Compilesa PROMULA source code and displays the listing on the console.
Syntax:
RUN SOURCE fi | enane
Remarks:
filename isthe name of atext file containing PROMULA statements.

Upon execution, PROMULA will compile the code contained in the file named by fi | ename. The compilation will be
shown on the screen.

After a successful compilation, control can be returned to the calling program by a STOP statement. The RUN SOURCE
statement can be a convenient alternative to using the dialog driven compiler (F5 from the Main Menu). It is most useful
for recompiling all the segments in a multisegment program which should be done whenever the top-level segment is
changed and recompiled.

You can also compile PROMULA source files using the simple RUN statement, but this will not show the compilation on

the console.

3.7.85 SELECT ENTRY
Purpose:

Allows the user to make a selection from alist of set elements.
Syntax:
SELECT ENTRY set
Remarks:
set istheidentifier of aset.
Upon execution, the SELECT ENTRY statement clears the Main Screen and displays the elements of set for browsing.
The display contains the set element codes and their row descriptors. A prompt at the bottom of the Prompt Screen

describes how to browse the list and make a selection. The keyboard action during execution of this statement is described
below:

Browsing keys Pressing the arrow keys or the PgUp and PgDn keys moves a highlight bar through the list of set
elements.
Enter key Pressing the Enter key selects the currently highlighted set element, clears the screen, and alows

execution to continue.

End key Pressing the End key allows the user to exit without making a selection.

251



Promula Application Development System User's Manual

Seealso SELECT set, SELECT VARIABLE, and SELECT SET statements.

Examples:

The following example demonstrates the SELECT ENTRY statement:

DEFI NE SET
dir(4) "4 Directions”
END SET

DEFI NE VARI ABLE
dirn(dir) "ROWLABELS' TYPE=STRI N& 10)
END VARI ABLE

READ dirn: 8
NORTH SQUTH EAST VEST

DEFI NE PROCEDURE sel ent
SELECT RONdir, dirn)
SELECT ENTRY dir
WRI TE dir

END PROCEDURE sel ent

Execution of procedure sel ent and selecting the first element of set di r produces the displays below:

Identifier Description

1 NORTH
2 SQUTH
3 EAST
4 VEEST

End: Exit Arrows PgUp PgDn Hone: Move

Ent er:

Sel ect

Identifier Description
1 NORTH

252




Promula Application Development System User's Manual

3.7.86 SELECT FIELD
Purpose:

Vary the information associated with a pick menu field.

Syntax:

SELECT FIELD nenu FIELD = fldnum [, DESCRIPTION = flddsc ]
Remarks:
menu is the name of the pick menu that isto be modified.

menu must refer to a pick menu that was labeled VARIABL E when it was defined.

fldnum isan integer expression providing the sequence number of the field in menu that is to be modified. f | dnummay
be a numeric constant or a numeric variable.

flddsc isaquoted string or string variable containing a new label for the field to be modified. The text will be left
justified and truncated to fit in the space allocated for the field in the definition of menu. If the DESCRIPTION
clause is omitted, then the field label is blanked and the bounce bar will never go to the field.

See dso the DEFINE M ENU statement.

Examples:

The code fragment below may be used to experiment with the SELECT FIELD statement.

DEFI NE W NDOW

sw( 00, 00, 79, 22, whi t e/ bl ack, none)

pw( 01, 24, 79, 24, whi t e/ bl ack, t op/ si ngl e/ navy/ bl ack)
END W NDOW

DEFI NE MENU pi ckit, VAR ABLE, POPUP(sw, pw)
Your Options are as foll ows:
\[ 1] First option \
\[ 2] Second option \
\[ 3] Third option \
\[ 4] Fourth option \
\[ 5] SELECT FIELD \
END
FIELD 1, SELECT=1, ACTI ON=1
FIELD 1
END
FI ELD 2, SELECT=2, ACTI ON=2
FI ELD 2
END
FI ELD 3, SELECT=3, ACTI ON=3
FI ELD 3
END
FI ELD 4, SELECT=4, ACTI ON=4
FI ELD 4
END
FI ELD 5, SELECT=5, ACTI ON=5
SELECT FI ELD
END

253



Promula Application Development System User's Manual

END MENU

DEFI NE VARI ABLE
pi ck "Selection ="
fldno "Field Nunmber"

fl ddes "Field Description" TYPE=STRI N& 25)
END VARI ABLE

DEFI NE PROCEDURE sel fld
ASK "Woul d you like to change a Menu field: Y or N',Y
WRI TE "Enter Field Nunber (1 thru 9)"
READ f | dno
ASK "Woul d you like to blank or change the field: B or C',B
SELECT FIELD pickit, FIELD=fldno

ELSE C
WRI TE "Enter new field descriptor (up to 25 characters)™
READ f | ddes
SELECT FI ELD pi ckit, FIELD=fldno, DESCRI PTOR=f| ddes
END
selfld
ELSE N
END
END

DEFI NE PROCEDURE denp
SELECT pi cki t (pi ck)
WRI TE GOTOXY( 0, 10)
DO IF pick EQ5
selfld
ELSE
WRI TE (" SELECTI ON = " pi ck)
END I F
deno
END PROCEDURE deno

3.7.87 SELECT file
Purpose:
Selects arecord of arandom file for data access, or selects one or more records from an inverted file for data access.

Syntax:

SELECT fil e(key)
Remarks:
file istheidentifier of theinverted or random file you are accessing.

key is the sequence number, or the scalar variable whose value is the sequence number of the record you wish to
access. Alternatively, key isacode used for selecting the records of an inverted file.

If file isof type RANDOM, the record with sequence number key is selected. If fil e is of type INVERTED, all
records containing key are selected.

Examples:

1. Select the second record in arandom file and copy its datato atext file.

254



Promula Application Development System User's Manual

DEFI NE FI LE
txt1 TYPE=TEXT
ranl TYPE=RANDOM
END FI LE

OPEN ranl "b:ranl.ran", STATUS=OLD
DEFI NE VARI ABLE ranl
iteml "ltem 1" TYPE=REAL( 8, 0)
iten2 "ltem 2" TYPE=STRI NE 8)
itenB "lItem 3" TYPE=DATE( 8)
END VARI ABLE ranl

OPEN txt1l "b:txtl.txt", STATUS=NEW
SELECT ranl(2)

READ ranl

WRITE txt1(itentl: 8,itenR: 8,itenBd:8)

NOTE: At the beginning of the reading, the record pointer is a the beginning of the second record; at the end, the
pointer has advanced to the beginning of the third record in file ran1. No advancement will take place if the
record pointer is at the last record.

2. Itispossibleto select the records of arandom file based on a specific search key by using an inverted file. An example
of thisisillustrated below.

* purtrx is arandomfile containing 9 transactions records
DEFI NE FI LE

purtrx TYPE=RANDOM "Purchase transaction file"
END FI LE
* Structure of the purtrx record

DEFI NE VARI ABLE purtrx

transno " TRANSACTI ON NO. " TYPE=REAL( 5, 0)
stkcode " STOCK CODE" TYPE=STRI NG&(5)
stkdesc " STOCK DESCRI PTI ON' TYPE=STRI N§( 32)
stkqty " STOCK QUANTI TY" TYPE=REAL( 5, 0)
stkcost "STOCK UNI T COST" TYPE=MONEY( 11)

END VARI ABLE purtrx
* Display entire randomfile

DEFI NE PROCEDURE shot r x
OPEN purtrx "purtrx.ran”
DO purtrx
WRI TE (transno, stkcode: 7, st kdesc, stkqty, st kcost)
END purtrx
END PROCEDURE shot r x

Execution of procedure r dt r x produces the output below.

100 ADP3 Adapter, 3" Galv Steel URD 5 1.20
101 ADP5 Adapter, 5" Galv Steel URD 10 100. 95
102 ADPAU Adapter, Anp URD 8 4. 80
103 BLTCA Bolts, Carriage 1/2" X 6" 50 0. 80
104 BLTCE Bolts, Oval Eye 5/8" X 12" 15 2.89
105 ADP5 Adapter, 5" Galv Steel URD 10 100. 95
106 BLTCA Bolts, Carriage 1/2" X 6" 100 0. 80
107 CAB12 Cabl e, #12 sol TwMre 200 0.04
108 ADP5 Adapter, 5" Galv Steel URD 10 100. 95

255



Promula Application Development System User's Manual

Read a single record in arandom file using a numeric record number

DEFI NE VARI ABLE
rn "Record Nunber"
END

DEFI NE PROCEDURE sel trx

SELECT purtrx(rn)

READ purtrx

WRI TE (transno, stkcode: 7, st kdesc, stkqty, st kcost)
END PROCEDURE sel trx

The third record of file pur t r x may be displayed using procedure sel t r x as shown in the dialog below.

rn = 3
seltrx
102 ADPAU Adapter, Amp URD 8 4,80

Select records from arandom file using an inverted (index) file.

Build an inverted file. Make "Stock Code" key postings. The key values from purtrx are stored in the random file
along with record sequence numbers. puri nv is an inverted file used for searching the "direct" file purtrx with
symbolic keys.

DEFI NE FI LE
purinv TYPE=I NVERTED( 10), "lInverted file"

END FI LE

DEFI NE VARI ABLE puri nv
pur key "Stock code key" TYPE=stri ng(5)
purseq "Transaction record number" TYPE=i nt eger (5)

END VARI ABLE puri nv
OPEN purinv "purinv.ran", STATUS = NEW

purseq = 0

DO purtrx
purkey = stkcode
purseq = purseq + 1
VWRI TE purinv

END purtrx

CLEAR purinv

Procedure sel key may be used to search arandom file by key and display the records which match.

DEFI NE VARI ABLE

key "User defined stock code" TYPE=stri ng(5)
END VARI ABLE
OPEN purinv "purinv.ran", STATUS = OLD

DEFI NE PROCEDURE sel key
SELECT puri nv(key)
DO puri nv
SELECT purtrx(purseq)
READ purtrx
WRI TE(transno\ 1, st kcode\7, st kdesc\ 15: 0: 0, st kgt y\50, st kcost\60)
END DO puri nv

256



Promula Application Development System User's Manual

END PROCEDURE sel key

A sample dialog with procedure sel key is shown below

* Select all records with a stock code "ADP5"

key = " ADP5"

sel key

101 ADP5 Adapter, 5" Glv Steel URD 10 100. 95
105 ADP5 Adapter, 5" Galv Steel URD 10 100. 95
108 ADP5 Adapter, 5" Galv Steel URD 10 100. 95
* Select all records with a stock code " CAB12"

key = "CAB12"

sel key

107 CAB12 Cabl e, #12 sol TWhvire 200 0.04

* Select all records with a stock code "BLTCA"
key = "BLTCA"

sel key
103 BLTCA Bolts, Carriage 1/2" X 6" 50 0. 80
106 BLTCA Bolts, Carriage 1/2" X 6" 100 0. 80

3.7.88 SELECT indirect

Purpose:
Allows selection of a program variable for subsequent input/output operations.

Syntax:

SELECT indir(varlist)

Remarks:

indir is the identifier of an indirect variable. Indirects may be used with the WRITE, BROWSE, and EDIT
variable, SORT, DO DESCRIBE, and PLOT statements. Indirects should not be used in calculations,
SELECT SET IF, or the WRITE text statements.

varli st isalist of variable identifiers. If varli st contains a single identifier, i ndi r will be assigned to it and no

variable selection screen will be displayed. If varli st is omitted, the selection list will display all the
variablesin the program except i ndi r .

Upon execution, the SELECT indirect statement clears the Main Screen and displays the list of variablesinvarl i st for
selection. The display contains the variables' identifiers and descriptors as defined in their definitions. A prompt at the
bottom of the Prompt Screen describes how to browse the list and make a selection.

The following keys are active during execution of this statement:

Browsing keys Pressing the arrow keys or the PgUp and PgDn keys moves a highlight bar that highlights the current

variable.
Enter key Pressing the Enter key selects the current variable, clears the screen, and allows execution to continue.
End key Pressing the End key allows the user to exit without making a selection.

See dso the ASK...EL SE statement and the INDIRECT function.

257



Promula Application Development System User's Manual

Examples:
The following example demonstrates the SEL ECT indirect statement:

DEFI NE VARI ABLE
indir*
xval "THE VALUE OF X' VALUE=10
yval "THE VALUE OF Y" VALUE=20
zval "THE VALUE OF Z" VALUE=30
END VARI ABLE

DEFI NE PROCEDURE sel var
SELECT i ndi r(xval, yval, zval)
DO | F END
WRI TE " Goodbye"
BREAK sel var
END | F
WRITE (indir:L,indir) CLEAR(-1)
sel var
END PROCEDURE sel var

Execution of procedure sel var and selection of variable yval produces the following displays:

I dent Description
XVAL  THE VALUE OF X
YVAL THE VALUE OF Y

ZVAL  THE VALUE OF Z

End: Exit Arrows PgUp PgDn Honme: Mbve Enter: Select

THE VALUE OF Y 20

3.7.89 SELECT menu
Purpose:

Displays a pick menu for making a selection.

258



Promula Application Development System User's Manual

Syntax:

SELECT menu( opti on)

Remarks:
menu isthe identifier of a pick menu.
option isavariable that will pick up the number (or action code) of the selection picked. The value of opt i on may

be used to determine aternative execution paths.

A pick menu is a screen display which is designed to help its user pick from a set of selection fields that have been
previoudly laid out with a DEFINE MENU statement. Two types of pick menus may be used with the SELECT menu
statement: simple, and popup pick menus.

When a simple pick menu is used in a SELECT menu statement, PROMULA clears the window opened to the Main
Screen, displays the menu, and highlights the first selection field.

Simple pick menu selections may be made by using the arrow keys to highlight the desired field and then pressing the
Enter key, or by using the function keys (or the numeric keys) directly. The F1 (numeric 1) key picks the first field in the
menu, the F2 (numeric 2) key picks the second field , and so forth. If you have more than ten selection fields, then press the
Alt or Shift key together with one of the ten Function keys to get up to twenty selections. For example, pressing Alt-F1
picksthe 11th selection. When afield is selected, the sequence number of the field (as defined by its relative position on the
menu) will be stored in the variable opt i on, and execution will continue with the statement following the SELECT menu
Statement.

When a popup pick menu is used in a SELECT menu statement, PROMULA displays the selection screen for the popup
pick menu in the menu's selection screen window, and displays the field description for the currently highlighted field in the
menu's field description window. The last selected option is highlighted. The first time the menu is executed, the first
selection is highlighted.

Popup pick menu selections may be made by using the arrow keys to highlight the desired field and then pressing the Enter
key. To minimize keystrokes, you may enter a char as defined in one of the SELECT=char parameters of the menu
definition. The SELECT menu statement does not distinguish between upper and lower case alphabetic keypresses; thus, if
SELECT=A, the user may select the field either by pressing the 'A’ or 'a’ key. When a popup menu selection is made, the
value of code, as defined in the appropriate ACTION=code parameter of the menu definition, will be returned to
PROMULA. If code isthe name of a submenu defined in the popup menu, the submenu will be displayed for selection. If
code isanumber, its value will be stored in the variable opt i on, and execution will continue with the statement following
the SELECT menu statement.

The user may return from a popup pick menu submenu by pressing the End key.

If your system supports a pointer device (such as a mouse), you may make a pick menu selection by positioning the pointer
in the desired selection field and clicking the pointer/mouse button.

Examples:
An example of the SELECT menu statement is given with the discussion of the DEFINE M ENU statement.
A third type of pick menus, pulldown pick menus, are executed with the SELECT PULLDOWN statement.

3.7.90 SELECT option
Purpose:

259



Promula Application Development System User's Manual

Selects PROMULA system options.
Syntax:
SELECT option
Remarks:
option isalist of any or all of the following options.
BACKGROUND=BLACK/WHITE/NAVY / GREEN/BLUE /RED /PURPLE/YELLOW
to change the color of the Main Screen background.
BROWSE=ON/ OFF / ROW / COLUMN/VALUE

to control the behavior of the WRITE variable and WRITE table statements, and tables defined by the DEFINE
TABLE statement.

When BROW SE=0FF, the above statements write the complete variable or table then proceed with the next statement

without pausing. This option is useful for short reports on screen or output that is to be captured on disk (using the

WRITE fileor SELECT OUTPUT statements) or sent to a printer. BROW SE=0OFF isthe default.

When BROWSE=0N, the above statements generate displays which may be viewed in a controlled interactive mode

asif aBROWSE variable or BROW SE table statement had been executed. This option is useful for viewing longer

reports on screen.

When BROWSE=ROW, COLUMN, or VAL UE, the above statements may be used for interactive data editing as if

an EDIT variable or EDIT table statement withaBY ROW, COLUMN or VAL UE option had been executed.
COMMA=0ON/OFF

to show commas in displays of numeric values denoting thousands (e.g., 1,500,000; 1,200.) The default is ON.
DATE=MMDDY2/MMDDY4/DDMMY2/DDMMY4

to select alternative formats for the DATE type variable.

When DATE=MMDDY 2 (the default) dates are treated as 8-character strings of the form mm/dd/yy for input-output

purposes. Internaly, the date is stored as a numeric quantity of the form yymmdd. For example February 14, 1966 may

be entered or displayed as 2/14/66 and isinternally stored as 660214.

When DATE=MMDDY 4 dates are treated as 10 character strings of the form mm/dd/yyyy for input-output purposes.
Internally, the date is stored as a numeric quantity of the form yyyymmdd.

When DATE=DDMM Y2 dates are treated as 8-character strings of the form dd/mm/yy for input-output purposes.
Internally, the date is stored as a numeric quantity of the form yymmdd.

When DATE=DDM MY 4 dates are treated as 10-character strings of the form dd/mm/yyyy for input-output purposes.
Internally, the date is stored as a numeric quantity of the form yyyymmdd.

Note, if you plan to do math on the 10-character date formats, you should pass the date variable to a variable of
TYPE=INTEGER(10) in order to retain at least 10 significant digits.

DEBUG=0ON / OFF

260



Promula Application Development System User's Manual

to control whether or not PROMULA pauses after encountering an error during compilations.

When DEBUG=0ON, PROMULA issues an error message upon encountering an error in compilation and pauses the
compilation at that point. This is the default.

When DEBUG=0OFF, PROMULA issues an error message but does not pause.

ECHORfi |l espec

to specify afile in which to save an audit trail of PROMULA statements executed from command mode. The syntax of
this statement is exactly like the SELECT OUTPUT statement, but, instead of capturing the output generated by
PROMULA in atext file, this statement causes the PROMULA command mode statements to be captured. It is not
necessary to SELECT PRINTER=0ON/OFF to activate/deactivate the command capture.
fil espec isaquoted string or string variable containing the name of the file to be used for command capture.
To turn the statement capture off and close the file, execute aSELECT ECHOR "" statement.

FACTOR=var

to specify a variable whose value(s) should be used as a scaling factor for all numeric data reports displayed by the
WRITE variable, and BROW SE variable statements.

To deactivate the FACTOR option, execute a SELECT FACTOR = * statement.

var isthe identifier of the variable to be used as the scaling factor. The value(s) of the scaling factor is multiplied
times each value to be displayed, and the resultant product is shown. If var isa multidimensional array, the set
correspondence (if applicable) is maintained between var and the variable displayed. The default value for var
isone.

FOREGROUND=BLACK /WHITE/NAVY / GREEN /BLUE/RED/PURPLE/ YELLOW
to change the color of the Main Screen foreground.
GHEADING=0ON / OFF

to turn page headings on plots on or off. The headings will only be produced if a SELECT HEADING=0ON statement
has also been executed. The default is ON.

GFORMAT=0ON/OFF
to turn the gformat feature of the report generator on or off. When GFORM AT=0N, numeric quantities that are too
large to fit in the specified display width are written in exponential notation. When GFORM AT=0OFF, numeric
guantities that are too large are written as asterisks. The default is OFF.

GRAPHICS=CHARACTER/MEDIUM /HIGH / PLOTTER

To select the mode for PROMULA graphics.

When GRAPHICS=CHARACTER, PROMULA's PLOT statement will produce character plots. CHARACTER
mode is appropriate for both monochrome and graphics monitors. Thisis the default.

261



Promula Application Development System User's Manual

When GRAPHICS=MEDIUM, medium-resolution plots are produced. The default MEDIUM graphics mode is
three-color medium resolution CGA graphics.

When GRAPHICS=HIGH, high-resolution plots are produced. The default HIGH graphics mode is monochrome
high resolution CGA graphics.

When GRAPHICS=PLOTTER, plots will be sent to the printer/plotter. The default PLOTTER/PRINTER graphics
mode is high-resol ution monochrome graphics on an Epson-compatible dot-matrix printer.

The actual behavior of each of the graphics modes depends on PROMULA's graphics configuration. The information
above appliesto PROMULA's default configuration. See Chapter 6 for adiscussion of configuring graphics.

HEADING=ON / OFF / EJECT

to control the page heading used by PROMULA's report generator. The report generator controls displays of
multivariate information including writing multidimensional arrays, writing tables, and displaying results of the
statistical functions. The headings will also appear at the top of plots generated in batch mode.

When HEADING=0N, a page feed character and a header is written at the top of each page. This header includes the
descriptor for the program (if available), the current date (in the form MM/DD/YY), and the word "Page" followed by
the page number which isincremented by 1 as a new page is shown. Thisis the default.

When HEADING=OFF no header or page feed character is written at the top of each page.

When HEADING=EJECT, only apage feed character is written in the header.

HELPfil espec
to select adiaog file to serve as an on-line help file.

fil espec isaquoted string or string variable containing the name of the physical disk file that contains the dialog
file you want to use as an on-line help file.

When the user presses Alt-H in response to a prompt, PROMULA looks for a DO IF HEL P statement immediately
following the statement that generated the prompt. If aDO IF HELP block is found, PROMULA executes statements
in the block. If no DO IF HELP block isfound, PROMULA checks to see if adiaog file has been specified with the
SELECT HELP statement. If so, PROMULA will display the dialog file for browsing.

If you have opened a window to the Help Screen, the dialog file will be shown in this window; otherwise, the Main
Screen is used. See the DEFINE WINDOW and OPEN WINDOW statements and the discussion of windowing for
details of this feature.

Popup menus have an optional HEL P parameter as part of their field statements. This parameter specifies a topic (by
its sequence number) in a diaog file. When the user presses Alt-H in response to a POPUP menu, PROMULA opens
the file specified with the SELECT HELP statement and displays the TOPIC whose sequence number matches the
help code of the currently highlighted field in the POPUP menu.

HIERARCHY=0ON/OFF

to control the interpretation of equations.

When HIERARCHY=ON, operator precedence rules are turned on and expressions are evaluated using algebraic
hierarchy precedence. Thisisthe default.

262



Promula Application Development System User's Manual

When HIERARCHY=OFF, operator precedence rules are turned off and expressions are evaluated using left-to-right
(linear) precedence.

LINES=page
to change the number of lines per page to page. The default page length is 25 lines. The length of CHARACTER
mode plots can be controlled by using the SELECT LINES statement. The number of lines written by the WRITE
menu statement also is controlled by the SELECT LINES statement.
page isan integer constant or a numeric variable.
MAP=ON/ OFF
to produce a memory map with the compilation listing.
When M AP=OFF no memory map is produced with the listing. Thisis the default.
When MAP=ON amemory map is produced with the listing.
Each statement line of thislisting has four columns of sequence numbers:
The first number, in Column Value, is the relative address of the next available word of "value storage”. Depending on
the size of your computer system memory, this number cannot exceed a certain maximum. If it does, you have to use

program segmentation or database management to make your program fit within your working space (see Chapter 4).

The second number, in Column Def, isthe relative address of the next available word of "definition storage”. Y ou need
concern yourself with this number only if its value exceeds a certain maximum.

The third number, in Column Proc, is the relative address of the next available word of "procedure storage”. This, too,
cannot exceed a certain maximum determined by the size of your computer memory. The Proc numbers are also
reported as the Statement addr ess during execution errors, and you may locate the statement generating the error by
looking up the statement in a mapped compilation listing.

The fourth number, in Column Line#, is the sequence number of the statement within the source listing.

Figure 3-1 shows the output produced by the PROMULA compiler for a source program that has the M AP=0ON option
in effect.

SELECT MAP=ON
Storage Allocation
Val ue Def Proc Line# PROMULA Source Statenent

11 24 20 2  OPEN SEGVENT " DEMO. XEQ' STATUS=NEW

11 24 20 3 DEFI NE PROGRAM " A Deno Progrant

11 24 25 4  DEFINE SET

11 24 25 5 nont h(12) "Mont hs of the Year"

11 54 25 6 acnt ( 3) "Profit and Loss Ledger Accounts”

11 78 25 7 END SET

11 78 25 8 DEFI NE VARI ABLE

11 78 25 9 np(nont h, acnt) TYPE=REAL(12,2) "Profit & Loss Figures ($)"
47 98 25 10 m( nont h) TYPE=STRI NG(12) "Month Names"

83 114 25 11 acn(acnt) TYPE=STRI N 12) "Profit & Loss Accounts”

92 135 25 12 anp TYPE=REAL( 10, 2) "Average Monthly Profit ($)"

93 154 25 13 END VARI ABLE
93 154 25 14 DEFI NE RELATI ON
93 154 25 15 KEY( nont h, m)
93 154 25 16 KEY(acnt, acn)
93 154 25 17 END RELATI ON

263




Promula Application Development System User's Manual

93 154 25 18 READ mm: 4

93 154 34 19 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
93 154 25 20 READ acn: 6

93 154 34 21 Sal es Costs Profit

93 154 25 22 DEFI NE PROCEDURE profits

93 160 25 23 SELECT acnt ( Sal es)

93 160 29 24 EDIT np TITLE("Pl ease enter the nonthly sales.")
93 160 46 25 SELECT acnt ( Cost s)

93 160 50 26 EDIT np TITLE("Pl ease enter the nonthly costs.")
93 160 67 27 SELECT acnt*

93 160 70 28 np(m 3) =np(m 1) - np(m 2)

93 160 89 29 amp=SUM m) (nmp(m 3)/ 12)

93 160 101 30 WRI TE np

93 160 106 31 WRI TE anp

93 160 111 32 STOP

93 160 112 33 END profits
93 160 113 34 END PROGRAM DQ(profits)
93 160 113 35 STOP

Figure 3-1: Compilation Output to Printer with SELECT MAP=ON
MATHERROR=ON/OFF
to control math error processing during execution of calculations.

When MATHERROR=0ON, PROMULA will stop program execution if it attempts to do a division by zero, a
logarithm of a negative number, or a fractional power of a negative number. This is the default condition. Like all the
SELECT option statements, the SELECT MATHERROR affects the entire program; however, it is possible to
implement local error processing using the DO IF ERROR statement. When MATHERROR=0OFF, PROMULA will
give a zero result for these abnormal calculations, and will continue with program execution.

MINUS=LEADING / PARENTHESES
to control the display of negative numbers.
When MINUS=LEADING, negative values are displayed with a leading minus sign. This is the default. When
MINUS=PARENTHESES, negative values are displayed enclosed in parentheses, e.g., the value -10.0 is displayed as
(10.0).

NS=code, ND=code, NA=code, or ERR=code.

to specify a code value to use for the input or output of special values. An alternative syntax is SELECT NS(code),
ND(code), NA(code), ERR(code) where code is up to to six alphanumeric characters. See the discussion of
SELECT SPECIAL below.

OUTPUT fil espec
to select afile for subsequent output operations.

fil espec is aquoted file name or a string variable that contains the name of a file in which you want to save the
results of output statements. Output will also be displayed on the screen even if another device has been selected.

Tousethe SELECT OUTPUT statement, follow it witha SELECT PRINTER=ON statement, and any other options
you may want to set for text report generation.

SELECT OUTPUT "report.out" PRI NTER=ON W DTH=132

264




Promula Application Development System User's Manual

After selecting output, most displays produced by PROMULA will be written to the specified disk file. The affected
statements include WRITE text, WRITE variable, COPY file, WRITE function, WRITE table, table, PLOT (in
CHARACTER mode), WRITE menu, WRITE TEXT, and the statistical function reports. To close the file and
inactivate the SELECT OUTPUT statement, execute a SELECT PRINTER=OFF statement.

PAGE=nunber

to change the value of PROMULA's internal page counter to nunber . The current page count is displayed in display
headings produced by the report generator.

PATH pat hspec

to indicate what the path of the data drive is. Here, pat hspec is a valid path specification or a string variable whose
value isavalid path specification, including subdirectory parameters.

Y ou can turn pathing off by executinga SELECT PATH "" statement.

Y ou may locally override the path to pathspec by using an S: asa"drive designation” before file names. For example if
you enter the statement OPEN fil e "S: mydat a. dt a" STATUS=0LD, PROMULA will ignore the path designated by
pat hspec and look in the current system path for nydat a. dt a. You cannot turn pathing off by selecting option 2
from the Main Menu.

PRINTER=ON / OFF
to turn the printer on or off.
The statement SELECT PRINTER=ON has the same effect as the simultaneous pressing of the Ctrl key and the
PrtSc key on the IBM PC. Y ou may also print text whilein PROMULA by simultaneoudly pressing the Shift key and
the PrtSc key, thiswill send the contents of the current screen to the printer.

The SELECT PRINTER=ON/OFF statement is also used to start/stop the spooling of output to a disk file previously
specified by aSELECT OUTPUT statement.

QUOTES=0ON/ OFF
to control the placement of quotes around row labels, column labels, and page headings in displays produced by the

WRITE variable statement. When QUOTES=0N, double quotes are placed around these descriptors; this may be
useful for setting up data to import into an external spreadsheet program. The default is QUOTES=0OFF.

RUNID=set

to specify a character string that will be appended to the variable descriptor during display statements (WRITE,
PLOT, EDIT, etc.).

set istheidentifier of aset whose first selected row descriptor will be appended to display titles.
SCENARIO titlespec

to specify a character string that will be appended to the title of displays produced by the text report generator and
plots.

titl espec isaquoted string or a string variable whose value you want to appear as part of the title of all display
titles.

265



Promula Application Development System User's Manual

SPECIAL=ON/OFF
to activate PROMULA's special value processing.

When SPECIAL=0ON, PROMULA will process the following codes as specia data values: NS = Not specified, NA =
Not available, ND = Not disclosed. These codes will appear in reports and in results of expressions involving variables
containing specia values.

When SPECIAL=0FF, PROMULA will treat values of arrays containing special values as if they were zero. Thisis
the defaullt.

STEP =ON/OFF

to activate/deactivate step mode during execution of a program. When STEP = ON, PROMULA will enter command
mode after each statement, at this point, you may enter any command or do debugging operations as needed. When you
are ready to execute the next statement, press the Escape key. In the default mode, STEP = OFF, execution proceeds
from statement to statement without pausing.

STRING (I en)

to change the maximum length of descriptorsto | en, an integer. The default length is 800 characters per descriptor.
STORE=RAW /VIRTUAL / DYNAMIC

to change the default behavior of the STATUS=0OLD option of the OPEN file statement. If STORE=RAW, files
opened with STATUS=OLD or with no explicit status specification are opened with the OLD status. If
STORE=VIRTUAL, files opened with STATUS=0OLD or with no explicit status specification are opened with the
VIRTUAL status. If STORE=DYNAMIC, files opened with STATUS=0OLD or with no explicit status specification
are opened withthe DYNAM I C status. See Chapter 4 for more information.

TRANSPOSE=ON / OFF

to control the orientation of array variable displays produced by PROMULA. Setting TRANSPOSE=0N specifies that
arrays should be displayed in column-major order. For example, if TRANSPOSE=0N, a one-dimensiona array will
be displayed across the columns instead of down the rows, a two-dimensional array will be displayed with its first set
dimensioning the columns and the second set dimensioning the rows, a three-dimensional array will be displayed with
its third set dimensioning the rows and the first set dimensioning the pages. In other words, multidimensiona arrays
will be displayed as if they had been defined with their first and last sets switched. The SELECT TRANSPOSE
statement affects the displays produced by the WRITE, BROWSE, and EDIT variable statements. The WRITE,
BROWSE, and EDIT variable statements can take a local TRANSPOSE option to override the global setting of
TRANSPOSE locally. If an explicit set order is included with any of these statements, any globa or local
TRANSPOSE settings are ignored.

UNITS=var

to specify a variable whose value(s) should be used to perform unit conversions for al numeric data reports displayed
by the WRITE variable, and BROWSE variable statements.

var is the identifier of the variable to be used as the conversion factor. The value(s) of the conversion factor is
multiplied times each value to be displayed, and the resultant product is shown. If var is a multidimensional
array, the set correspondence is maintained between var and the variable displayed. The default value for var
isone.

To deactivate the UNITS option, execute a SELECT UNITS=* statement.
WIDTH=wi dt h

266



Promula Application Development System User's Manual

to change the width of display lines to wi dt h, an integer. The default wi dt h is 80 characters per line. The width of
CHARACTER mode plots can be controlled by using the SELECT WIDTH statement.

wi dt h isanumeric variable or a numeric constant.
ZERO=BLANK / DASHES/ON
to control the display of zero displays produced by PROMULA.
When ZERO=BLANK, zero valuesin displays are shown as blanks.
When ZERO=DASHES, zero valuesin displays are shown as a pair of dashes.
When ZERO=0N, zero values in displays are shown as zeros. Thisis the default.
3.7.91 SELECT PULLDOWN
Purpose:
Defines and displays a pulldown pick menu for selection.

Syntax:

SELECT PULLDOWN option = wi nd (nenudesc)

Remarks:

option is a variable that will pick up the action code of the selection picked. The value of opt i on may be used to
determine alternative execution paths.

wi nd is the identifier of the window that will be used to contain the menu-bar for the pulldown menu. The color
scheme and border style for wi nd will also be used by any submenus defined in the menudesc. wi nd should
be a POPUP type window.

menudesc isthe description of the pulldown menu. The syntax of menudesc isasfollows:
(fldibl1l, fldcodl [,fldibl2, fldcod2] [,fldibl3, fldcod3] [, ... ] )
where
fldl bl n isalabel for the nth menuitem. Each f | dl bl n may be either a quoted string or string variable.

fldcodn is either a numeric action code or a submenu description for the nth menu item. If f1 dcodn isa
numeric action code, its value will be stored in opt i on when the field is selected and execution
will continue with the code following the SELECT PULLDOWN statement. If fl dcodn is a
submenu description the submenu will be displayed for selection.

If f1dcodn is followed by a dash (/) in a submenu definition, a line will be drawn across the
submenu.

Each submenu description has the same general form as nenudesc.

The fields of the top-level menu are displayed in a row across wi nd. The fields of any second level submenu drop down
from their parent field. The fields of any third level submenu are displayed to the right of their parent field. The size of the

267



Promula Application Development System User's Manual

"window" used to display a submenu is determined by PROMULA according to the number of fields it contains and the
length of itslongest field label.

Examples:

The example below illustrates the use of the SELECT PULLDOWN statement.

DEFI NE W NDOW
wl(1, 1,78, 1, WH TE/ BLACK, FULL/ SI NGLE/ NAVY/ BLACK, WHI TE/ NAVY) , POPUP

END W NDOW

DEFI NE VARI ABLE
pi ck "The nenu sel ection”
f(10) "Promul a nenu fields" TYPE = STRI NG 12)
v(10) "Promul a nenu sel ection val ues”

bar (10) "Promula nenu fields" TYPE = STRI NG 12)
END VARI ABLE

bar(1) = "File"
bar(2) = "Edit"
bar (3) = "Mai nMenu"
bar (4) = "Hel p"
f(1) = "Eit"

f(2) = "Restart"
f(3) = "Tutorial"
f(4) = "Editor"
f(5) = "Conpile"
f(6) = "Xeq"

f(7) = "Resune”
f(8) ="Ofline >"
f(9) = "Applications"

f(10) = "Language"
v(i) =i + 11

DEFI NE PROCEDURE t est
SELECT PULLDOMWN pi ck = wi(

bar (1) (
" New", 1,
l,
"Open >", (
" Sour ce", 101,
" Xeq", 102,
"Prnt, 103),
"Save", 2,
"Save as", 3
"Print", 4,
l,
"Exit", 5),
bar(2) (
"Undo", 6,
"Cut", 7,
" Copy”, 8,
" Past e", 9,
"Del ete", 10),
bar (3) (
f(1), v(1),
f(2), v(2),
f(3), v(3),
f(4), v(4),
f(5), v(5),

268



Promula Application Development System User's Manual

f(6), v(6),
f(7), v(7),
f(8) (
"Fred", 201,
"CGeorge", 202,
" Mar k", 203,
"Loi s", 204),
£(9), v(8),
f(10), v(9)),
bar (4) (
"Hel p for field", 22
"Ext ended hel p", 23,
"Keys hel p", 24,
"Hel p i ndex", 25,
"Tutorial", 26,
" About P90", 27),

)
VIRl TE CLEAR(0) (//// pi ck)
t est
END PROCEDURE t est

3.7.92 SELECT RELATION
Purpose:

Defines arelation between the elements of a set and the contents of an array variable indexed or subscripted by that set.
Syntax:

SELECT TYPE(set, vec)

or

SELECT TYPE(set, *)

Remarks:

set isthe identifier of the set whose elements are related to the values of the vector vec.

vec isthe identifier of the vector whose values are related to the elements of the set . vec isusually a STRING TYPE
variable

TYPE isthetype of relation between set and vec and may be one of the following:
ROW to define row descriptors for the set .
COLUMN to define column descriptors for the set .
KEY to define codes for the set : this type of relation will cause vec to serve as both column and row
descriptors for set and will allow you to make selections from set using the values of a CODE or
STRING type variable. See the example program in the discussion of the ASK...EL SE section in
this chapter for an illustration of this feature.

TIME to define time values for the set . Thistype of relation is used in dynamic simulations modeling.

A relation isnot valid unlessvec isavector variable indexed by set .

269



Promula Application Development System User's Manual

To restore the set relation to that specified in a previous DEFINE RELATION statement, use the SELECT type(set,*)
statement.

Examples:

The effect of the SELECT RELATION statement is demonstrated by the following program:

DEFI NE SET

year (2) "2 Years"

acnt (3) "Profit and Loss Ledger Accounts"
END SET

DEFI NE VARI ABLE
np(year, acnt) "Profit and Loss Figures ($)"
yn(year) "Year Nanes"
acn(acnt) "Profit and Loss Account Nanes"
acc(acnt) "Profit and Loss Account Nanes"
END VARI ABLE

TYPE=REAL( 10, 0)
TYPE=STRI NG( 12)
TYPE=STRI NG( 12)
TYPE=STRI N§( 12)

DEFI NE RELATI ON
ROWN year, yn)
KEY(acnt, acn)

END RELATI ON

READ yn: 5

1987 1988

READ acn: 7

Sales Costs Profit
READ acc: 7

ACNT-1 ACNT-2 ACNT-3

The dialog below shows how the SELECT RELATION statement can change the column descriptors for set acnt .

VRI TE np
Profit and Loss Figures (%)

Sal es Cost s Profit

1987 50, 000 48, 000 2,000

1988 91, 000 86, 000 5, 000

* Change the colum | abels for set acnt using a SELECT COLUWN st at enent
SELECT COLUM\( acnt, acc)

WRI TE np
Profit and Loss Figures ($)
ACNT- 1 ACNT- 2 ACNT- 3
1987 50, 000 48, 000 2,000
1988 91, 000 86, 000 5, 000
* The ROWNrel ation between variable acn and set acnt is still in place

WRI TE acc: 40

Profit and Loss Account Nanes

Sal es
Cost s
Profit

* Restore the COLUW rel ation between acnt and acn

SELECT COLUMN( acnt , *)
WRI TE np

ACNT- 1
ACNT- 2
ACNT- 3

Profit and Loss Figures ($)

270




Promula Application Development System User's Manual

Sal es Cost s Profit
1987 50, 000 48, 000 2,000
1988 91, 000 86, 000 5, 000

3.7.93 SELECT set

Purpose:
Selects elements of a set.

Syntax:
SELECT set(list) or SELECT set*
Remarks:
set isthe identifier of the set whose elements are selected.
list isalist of element selectionsand may be of the form:
k, 1, mt
where the notation m t means"frommtot " and wherek,| ,m andt are any of the following:
1. integersfrom 1to N, where N isthe size of the set
2. identifiersof scalar variables whose values are in therangefrom 1 to N
3. thevalues of CODE or STRING type variables that have been related to set through aKEY relation.
4. timevauesthat have been related to the elements of the set through a TIM E relation.
* is an asterisk that means clear the present set selection and restore the set to its default size and order as defined by
the DEFINE SET statement. A set will be restored to a size other than its default size if you have executed a

COMPUTE set:R statement before the restore (see the discussion of setsin Chapter 1).

In its norma setting, a set has a number of elements N that are ordered sequentially from 1 to N. The SELECT set
statement allows you to change both the range and the relative ordering of the set elements.

A set selection is in effect until a new set selection is specified. Following a set selection, al expressions involving
variables that are subscripted by that set are restricted by the range and ordering of the set selection.
A set selection isvalid only if it has values between 1 and N, the size of the set.
Examples:
1. The statement
SELECT mont h(1, 6, 9)
selects the 1st, 6th, and 9th element of the set nont h, i.e., the months January, June and September. All subsequent

calculations or input/output instructions involving variables subscripted by nont h will be restricted to the selected
months.

271



Promula Application Development System User's Manual

2. The statement

SELECT nont h( JAN- JUN)

selects the first six months, January through June, of the set mont h. Here, JAN and JUN are codes that have been
related to the nont h set by aKEY relation.

3. Thestatements
X =1
y =6
SELECT nont h( x-y)

have the same effect as the statement of Example 2. Here, x and y are real variables that select the first six months,
January through June, of the set nont h.

4. The statement
SELECT nont h(JAN-JUN), year (1980-1984)
selects the elements of more than one set.
5. The statement
SELECT nont h*, year?*

resets the setsnont h and year to their default sizes and orders.

3.7.94 SELECT SET

Purpose:

Allows the user to make severa selectionsfrom alist of set elements.

Syntax:

SELECT SET set

Remarks:

set istheidentifier of aset

Upon execution, the SELECT SET statement clears the Main Screen and displays the elements of set for browsing. The

display contains the set element codes/numbers and their descriptors as defined by aDEFINE RELATION or aSELECT

relation statement. A prompt at the bottom of the Prompt Screen describes how to browse and make selections from the

list.

The keyboard action during execution of this statement is described below:

Browsing keys Pressing the arrow keys or the PgUp and PgDn keys moves a highlight bar through the list of set
elements. The current set element is highlighted in cyan if it has not been selected, or in red if it has

already been selected. These default colors can be modified by a DEFINE WINDOW and OPEN
WINDOW statement.

272



Promula Application Development System User's Manual

Ins key Pressing the I ns key inserts a set element into the selection vector, and causes its sequence number to
be marked by highlighting it in green or in a color defined via a previous DEFINE WINDOW
statement.

Del key Pressing the Del key cancels a previous selection.

Enter key Pressing the Enter key activates selection of the currently highlighted set elements, and allows the

execution to continue. If no elements are high-lighted when Enter is pressed, the set remains in the
same state it was in before the SELECT SET statement.

End key Pressing the End key allows the user to exit without making any selections.
Examples:

The following example demonstrates the SELECT SET statement:

DEFI NE SET
dir(4) "4 Directions"”
END SET

DEFI NE VARI ABLE
dirn(dir) "ROWLABELS' TYPE=STRI N& 10)
END VARI ABLE

READ dirn: 8
NORTH SQUTH EAST VEST

DEFI NE PROCEDURE sel set
SELECT RONdir, dirn)
SELECT SET dir
WRI TE dir

END PROCEDURE sel set

Execution of procedure sel set and selection of the first and fourth elements of set di r produce the following two
displays:

273



Promula Application Development System User's Manual

I dentifier Description
NORTH
SOUTH
EAST
VEST

S w N R

End: Exit Arrows PgUp PgDn Home: Move Ins: Tag Del: Untag Enter: Select

Identifier Description
1 NORTH
4 VEST

3.7.95 SELECT set IF
Purpose:

Select elements of a set according to a condition on a variable indexed by the set.

Syntax:
SELECT set |F condition
Remarks:
set isthe identifier of the set whose elements are being selected.
condi tion is any true-false expression involving one or more array variables subscripted by set. Only those

elements for which condi ti on istrue are selected. If condi ti on isfase for all elements, the selection
isnull and all elements of set are selected.

To detect and correct for a null set selection use the DO IF NULL statement immediately after the SELECT SET IF
statement. An example of thisfeatureisin the section related to the DO IF NUL L statement.

The selections made by SELECT set |F are made from the current selection vector of set. Thus a cascading, nested
selection may be made by executing several SELECT set | F statementsin series.

Examples:

274




Promula Application Development System User's Manual

DEFI NE SET
nont h(12)
END SET

DEFI NE VARI ABLE
nmv( nont h) "Vector by Month"
END VARI ABLE

READ v
1,0,0,1,0,0,1,0,0,1,0,1

SELECT nmonth IF mv NE O

After the selection, the selected values of the set may be illustrated by writing a variable subscripted by the set.

WRI TE nv
Vector by Month

MONTH( 1)
MONTH( 4)
MONTH( 7)
MONTH( 10)
MONTH( 12)

PRRRPR

The SELECT statement above selects only those months for which the value of variable m/ is not equal to zero.
3.7.96 SELECT VARIABLE
Purpose:

Asksthe user a series of set selection questions based on the sets structuring a specified variable.

Syntax:

SELECT VARI ABLE var
Remarks:

var is the identifier of an array variable that will serve to define a series of set selection questions. The order and
identity of set selection questions will be defined by the order and identity of sets structuring var .

This statement provides an alternative to the ASK statement as a way of allowing the user to make set element selections.
Upon execution, the SELECT VARIABLE statement will pose a series of set selection questions to the user for each set
dimensioning var .

Each question will be of the form

Wi ch setdesc entry(s) do you want?

Where set desc isthe descriptor of the set being selected. If no set descriptor was specified when the set was defined, the
set identifier (in capital letters) will be used.

PROMULA will check the validity of the user's responses to ensure that selections are in the range of the set.

275



Promula Application Development System User's Manual

In addition to set codes or element numbers, the following keywords may be entered in response to the SELECT
VARIABLE statement's prompts:

ALL  toselect al elementsin the range of the set being selected.
LIST todisplay the element numbers or codes and descriptors of all active elements of the set being selected.
END toexitthe SELECT VARIABLE statement set selection process.

Example:

The behavior of the SELECT VARIABLE statement isillustrated in the example below. First, two sets are defined: year,
atime series set, and st at e. Notice that set year has no descriptor and that set st at e has a strange looking descriptor
specifically for use with the set selection question generated by the SELECT VARIABLE statement. Next, two variables
are defined: pop isatwo-dimensional array that will be used inthe SELECT VARIABLE statement to control the order of
set selections, st at en is acode type variable that can be used to specify selections from set st at e. Next, variable st at en
is related to set state and the variables are initialized. Finally, procedure sl cvar is defined to run the SELECT
VARIABLE statement and display the resullts.

DEFI NE SET
year (4) Tl ME(1990, 2020)
state(3) "of the 3 state"
END SET

DEFI NE VARI ABLE
val (state,year) TYPE=REAL(15,0) "State Val ues"
staten(state) TYPE=CCDE( 2) "State Nanes”
END VARI ABLE

SELECT KEY(state, staten)

READ staten: 3
OHCAIL

val (i,j)=i*j*100000
DEFI NE PROCEDURE sl cvar
SELECT VARI ABLE val

WRI TE val
END PROCEDURE sl cvar

A sample dialog with procedure sl cvar is shown below:

DO sl cvar

Which of the 3 state entry(s) do you want?
list

Identifier Description

1 H

2 CA

3 IL

Wi ch of the 3 state entry(s) do you want?
CA

Wi ch YEAR entry(s) do you want?

1990- 2010

State Val ues, 1990 to 2010

1990 2000 2010
CA 200, 000 400, 000 600, 000

276



Promula Application Development System User's Manual

3.7.97 SORT
Purpose:

Sorts the elements of a set based on the values of a variable subscripted by that set.

Syntax:
SORT [order] set USING var

Remarks:
or der isthe order in which the set will be sorted and may be one of the following:

ASCENDING sorts the specified set according to the values of var ordered from low to high. Thisis

the default order.

DESCENDING sorts the specified set from high to low.
set isthe identifier of the set whose elements are being sorted.
var isthe identifier of avariable whose values are used to determine the order of the set. The variable var must be

classified by set , i.e, it must have set as one of its subscripts; thus, it cannot be a scalar.

The variable var may be multidimensional, i.e., it may have additional subscripts other than set . In such case, the sorting
is done over the dimension corresponding to the set with all the other sets dimensioning the array fixed at asingle element.
If not otherwise specified by a SELECT set statement, all dimensions other than set are fixed at the first element of their
selection vector.

After asort operation, the sorted order of set remainsin effect until a SORT or SELECT SET statement is executed.
If var isastring variable, the elements of set are sorted al phabetically.
Examples:

The following program illustrates the SORT statement.

DEFI NE SET
row( 10)
col (5)

END SET

DEFI NE VARI ABLE
var 1(row) "A 1-Di mensi onal Array"
var 2(row, col) "A 2-Di nensi onal Array"
END VARI ABLE

READ var 1
3 45 56 19 21 34 97 89 52 21

READ var 2

24 5 56 34 21
98 76 34 27 14
11 23 41 17 32

277



Promula Application Development System User's Manual

54 10 99 2 20
122 3 435
51 49 48 47 46
11 31 33 22 11
33 15 67 22 44
79 21 59 85 69
33 99 1 98 49

The variable valuesin their default orders may be displayed by WRITE variable statements.

WRI TE var 1l
A 1-Di mensi onal Array
ROW 1) 3 RON?2) 45  RON3) 56
ROW( 4) 19 ROW5) 21  ROW6) 34
ROW 7) 97  ROW8) 89 ROW9) 52
ROW 10) 21
WRI TE var 2
A 2-Di nensi onal Array
COL(1) ©OL(2) ©COL(3) COL(4) COL(5)
RON( 1) 24 5 56 34 21
ROW 2) 98 76 34 27 14
ROW( 3) 11 23 41 17 32
ROW( 4) 54 10 99 2 20
ROW( 5) 1 22 3 4 35
ROW( 6) 51 49 48 47 46
ROW 7) 11 31 33 22 11
ROW( 8) 33 15 67 22 44
ROW 9) 79 21 59 85 69
ROW 10) 33 99 1 98 49
The use of the SORT statement isillustrated in the dialogs below.
Sort the elements of set r owin ascending order using the values of variable var 1.
SORT ASCENDI NG row USI NG var
WRI TE varl
A 1-Di nensi onal Array
RON( 1) 3  ROW4) 19 ROWY5) 21
ROW 10) 21  ROW6) 34  ROW2) 45
ROW 9) 52  ROW3) 56  ROW8) 89
ROW 7) 97
Sort the elements of set r owin descending order using the values of variablevar 1.
SORT DESCENDI NG row USI NG var 1
WRI TE var 1l
A 1-Di nensi onal Array
ROW 7) 97  ROW8) 89 ROW3) 56

278




Promula Application Development System User's Manual

RON(9)
ROW( 10)
ROA(1)

52
21
3

RON(2)
RON(5)

45
21

RON(6)
RON( 4)

34
19

Sort the elements of set r owin ascending order using the values of the 3rd column of variable var 2.

SELECT col (3)

SORT ASCENDI NG row USI NG var 2

SELECT col *
WRI TE var 2

ROW( 10)

RON(5)
RON( 7)
RON( 2)
ROW( 3)
RON( 6)
ROA( 1)
RON( 9)
RON( 8)
RO 4)

A 2- Di mensi onal

CoL( 1)
33
1
11
98
11
51
24
79
33
54

CoL(2)
99
22
31
76
23
49

5
21
15
10

Array

COL(3)
1
3

33
34

COL( 4)
98
4
22
27
17
47
34
85
22
2

CoL( 5)
49
35
11
14
32

Sort the elements of set r owin descending order using the values of the 5th column of variable var 2.

SELECT col (5)

SORT DESCENDI NG row USI NG var 2

SELECT col *
WRI TE var 2

RO 9)
ROW( 10)
ROW( 6)
RON( 8)
ROW(5)
ROW( 3)
RON( 1)
ROW( 4)
ROW( 2)
RON( 7)

(1)

79
33
51
33

1
11
24
54
98
11

A 2-Di nensi onal

COL(2)
21
99
49
15
22
23

5
10
76
31

Array

COL( 3)
59
1
48
67
3
41
56
99
34
33

COL(4) ©OL(5)
85 69
98 49
47 46
22 44

4 35
17 32
34 21

2 20
27 14
22 11

Sort the elements of set col in ascending order using the values of the 8th row of variablevar 2.

SELECT row(8)

SORT ASCENDI NG col

SELECT row*
WRI TE var 2

USI NG var 2

CoL(2)

A 2-Di nensi onal

CaL(4)

Array

CoL(1)

COL( 5)

COL( 3)

279




Promula Application Development System User's Manual

RON(1)
ROW( 2)
ROW( 3)
ROW( 4)
ROW( 5)
ROW( 6)
RON( 7)
RON( 8)
ROW( 9)
RON( 10)

34
27
17

47

22

85
98

24
98
11
54

51
33

79
33

56
34
41
99

48

67
59

Sort the elements of set col in descending order using the values of the 2nd row of variable var 2.

SELECT row( 2)

SORT DESCENDI NG col USI NG var 2
SELECT r ow*
WRI TE var 2
A 2-Di nmensi onal Array
COL(1) CO(2) CO(3) CO(4) cCO(5)
ROW( 1) 24 5 56 34 21
ROW( 2) 98 76 34 27 14
ROW 3) 11 23 41 17 32
ROW( 4) 54 10 99 2 20
ROW( 5) 1 22 3 4 35
RON( 6) 51 49 48 47 46
ROW 7) 11 31 33 22 11
ROW( 8) 33 15 67 22 44
ROW 9) 79 21 59 85 69
ROW 10) 33 99 1 98 49
3.7.98 STOP

Purpose:

Returns control to the calling program after a RUN statement.

Syntax:

STOP

Remarks:

PROMULA's run statements: RUN file, RUN COMMAND, and RUN SOURCE, alow you to run programs while in

command mode or from within procedures.

The STOP statement returns control to the program that executed the last RUN statement.

Execution resumes at the

statement following the run statement. See example in the discussion of the RUN COMMAND statement.

The PROMULA Main Menu is at the top of every run chain.

3.7.99 STOP PROMULA

Purpose:

280




Promula Application Development System User's Manual

Stops PROMULA execution and returns control to the operating system.

Syntax:

STOP PROMULA
Remarks:
Sometimes it is useful to stop execution of the PROMULA system altogether and return to the operating system; the STOP
PROM ULA statement enables you to do this.
3.7.100 TIME

Purpose:

Initializes the values of the four time parameters used in controlling dynamic simulations.

Syntax:
TI ME( dt, begi nni ng, endi ng) [[ S| ZE] (w, d)]

Remarks:

dt isareal number that will be used to set the value of DT, the integration interval for time integrals.

begi nni ng is areal number that will be used to set the value of BEGINNING, the beginning time point or lower
limit of time integrals. The time parameter TIME is also set to the value of begi nni ng by the TIME
Statement.

endi ng is a real number that will be used to set the value of ENDING, the ending time point or upper limit of
timeintegrals.

w is an integer that specifies the width in characters of time parameter values when they are displayed in
reports produced by the report generator.

d is an integer that specifies the number of decimal digits for time parameter values when they are

displayed in reports produced by the report generator.

Before executing any dynamic simulation models, the control parameters must have been assigned a definite value via the
TIME statement. Note that once they have been defined, the values of the individual parameters may be displayed via the
BROWSE and WRITE statements, and may be changed via equations introduced by the verb COMPUTE. They may also
be referenced on the right-hand side of equations and within conditional expressions.

The current value for the independent variable TIME isinitially set equal to the value of BEGINNING. In a program that

has a value of TIME defined, all tabular displays generated by the report generator statements whose columns are not
classified by atime series set will have the current value of time added to the title.

See also Time Parameters in Chapter 1 and the discussion of Dynamic Procedures in the DEFINE PROCEDURE
section of Chapter 3.
3.7.101 WRITE COMMENT

Purpose:

Displaystext in the Comment Screen.

281



Promula Application Development System User's Manual

Syntax:

VWRI TE COVMENT
t ext

ENiDI .
Remarks:

text  isany text that you wish to display in the Comment Screen. The amount of text displayed is limited by the size of
the Comment Screen.

The keyword END must be entered starting in column 1 and must be capitalized.
Upon execution, the text will be shown in the Comment Screen of the display.

For more details, see the sections on Windowing in the beginning of this chapter.

3.7.102 WRITE DISK

Purpose:
Transfers data from alocal variable to adisk variable in an array file in the dynamic access method.

Syntax:

WRI TE DI SK(vars)
Remarks:
vars isalist of dynamic variables.

A dynamic variable is a scratch or fixed variable (also called a local variable) that has a dynamic relationship to a disk
variable. Local variables may be related to disk variables through the DI SK option of the DEFINE VARIABLE statement.
See chapter 4 for a detailed description of disk access methods.

Examples:

The following code

DEFI NE FI LE
filea
END FI LE

OPEN filea "test.dba" STATUS=NEW
DEFI NE SET

rec(1000) "Record"
END SET

DEFI NE VARI ABLE fil ea
dsk(pnt), "A Disk Variable on 'filea'"
END VARI ABLE fil ea

DEFI NE VARI ABLE

pp "Record Pointer”

scr "A dynamic variable for accessing single elenents of dsk", Dl SK(fil ea, dsk(pp)
END VARI ABLE

282



Promula Application Development System User's Manual

defines two variables: dsk and scr. The disk variable, dsk, is a vector of 1000 elements on the disk file named
test. dba. The variable scr is a dynamic local variable that is related to dsk. The READ DISK and WRITE DISK

statements transfer a specific value from and to disk asillustrated in the dialog below.

scr =0
dsk(i) =i

pp = 4

READ DI SK(scr)

WRI TE scr

A Scratch Variable in Menory 4
scr = 6

VRl TE DI SK(scr)

WRI TE (dsk:L," ", dsk(pp))
A Disk Variable on 'filea' 6

3.7.103 WRITE file
Purpose:

Write datato atext file or arandom file.

Syntax 1:  Write arecord of datato arandom file

WRITE file

Syntax 2:  Writeto atext file

WRITE file(varl[,fmt1] [,var2[,fnmt2]] [,...]
Remarks:
file istheidentifier of thefile you arewriting to.
varl istheidentifier of the variable whose dataisfirst on each data record.

fmt 1 istheformat specification for var 1 and has the following syntax:

\p:wd

p isaninteger indicating the starting column on each data line where the value for var 1 begins. The backslash

means. " start writingin column p" . If omitted, the value beginsin column 1.

w is an integer indicating the width of the value and it means "write the next w columns.” A negative width

parameter |eft justifies the value of var .

d is an integer indicating the number of decimal places to be displayed. If d is an "E", the values will be

displayed in exponentia notation.

If wand d are 0, no trailing blanks will be written.

283



Promula Application Development System User's Manual

var2 istheidentifier of the variable whose datais second on each data record.

fnt2 isthe format specification for var 2 and may have the same form as f nt 1 above. If p is omitted in f nt 2, the
starting column for var 2 isimmediately to the right of var 1.

Examples:

The examplesin this section are based on the following definitions:

DEFI NE FI LE
txt1l TYPE=TEXT
ranl TYPE=RANDOM
arrl TYPE=ARRAY
END FI LE

OPEN ranl "b:ranl.ran", STATUS=NEW

DEFI NE VARI ABLE ranl
iteml "ltem 1" TYPE=REAL( 8, 0)
iten2 "ltem 2" TYPE=STRI NE 8)
iten8 "lItem 3" TYPE=DATE( 8)

END VARI ABLE ranl

1. Read from atext file and write to arandom file.

OPEN txt1l "b:txtl.txt", STATUS=CLD
DO txt1l
READ txt1(itenil: 8,itenR: 8,itenB: 8)
WRI TE ranl
END txt1

2. Read from atext file and write to an array file.
DEFI NE SET
rec(100) "Records"
END SET

OPEN arrl "b:arrl.arr", STATUS=NEW
DEFI NE VARI ABLE arr1

varl(rec) "Variable 1" TYPE=REAL( 8, 0)
var2(rec) "Variable 2" TYPE=STRI NE 8)
var3(rec) "Variable 3" TYPE=DATE( 8)

END VARI ABLE arr1

DEFI NE VARI ABLE
rn "Record Nunber"
END VARI ABLE

rn =1

DO txt1l
READ t xt 1(var1(rn):8,var2(rn):8,var3(rn):8)
rn = rn+l

END txt 1

3. Read from arandom file and write to atext file.

DO ranl
WRITE txt1(itendl: 8,itenR: 8,itenB: 8)
END ranl

284



Promula Application Development System User's Manual

4. Read from arandom file and write to an array file.

rn =1

DO ranl
varl(rn) = itenl
var2(rn) = itenR
var3(rn) = itenB
rn = rn+l

END ranl

3.7.104 WRITE function
Purpose:

Writes the values of afunction in tabular form.

Syntax:
VRI TE func[fmt] [TITLE(text)]
Remarks:
func isthelogical identifier of afunction defined by the DEFINE FUNCTION or DEFINE L OOK UP statement.
fnt is a format specification of the form \ p: w. d to indicate the position of the display, the width of the values
displayed, and the number of decimalsin real values, where
p isaninteger indicating the width in characters of the row descriptors for the display.
w isaninteger indicating the width, in characters, of the columns of the display. A negative width parameter left
justifies the values displayed.
d is an integer indicating the number of decimal places to be displayed. If d is an "E", the values will be
displayed in exponentia notation.
For functions defined by the DEFINE L OOK UP statement, the default format is p=10, w=8 and d=2.
For functions defined by the DEFINE FUNCTION statement, wand d have the values specified in the DEFINE
VARIABLE statement for the function variables, and p is the value specified in the definition of the row
descriptors of the set subscripting the function variables.
text isatitlefor thedisplay and can contain text, variables, and other formatting characters as described in the WRITE
text statement.
Examples:

The WRITE function statement is illustrated below:

DEFI NE SET

pnt (6)
END SET

DEFI NE VARI ABLE

x(pnt) "The X val ues"

y(pnt) "The Y val ues"

p(pnt) "PNT Nanes" TYPE=STRI N& 6)
END VARI ABLE

285



Promula Application Development System User's Manual

x(i) =i
y(i) = i**2
p(i) = "PNT# "+i

SELECT ROW pnt, p)
DEFI NE FUNCTI ON

fx(x,y)
END FUNCTI ON

DEFI NE LOOKUP
gx(6) X(1,2,3,4,5,6) Y(2,8,18,32,50,72)
END LOOKUP

Given the above definitions, the statements

WRI TE fx\10: 10: 4 TI TLE(/ " Y=Ff (x) =x**2")
WRI TE gx\3:6:1 TITLE(/" Y=g(X) =2x**2")

produce the output below.

Y=f (x)=x**2

(1) (2)
PNT# 1 1. 0000 1. 0000
PNT# 2 2. 0000 4. 0000
PNT# 3 3. 0000 9. 0000
PNT# 4 4. 0000 16. 0000
PNT# 5 5.0000 25.0000
PNT# 6 6. 0000 36.0000

Y=g(x) =2x**2

(1 (2)

(1) 1.0 2.0

(2) 2.0 8.0

(3) 3.0 18.0

(4) 4.0 32.0

(5) 5.0 50.0

(6) 6.0 72.0

3.7.105 WRITE menu
Purpose:

Displays a"data" menu including the values of its data fields. This statement is useful for displaying output resultsin menu
form.

Syntax:
WRI TE nmenu(vars)
Remarks:
menu istheidentifier of a"data' menu.

vars isalist of variable identifiers that contain the values of the data fields to be displayed. The variables in the list
must be arranged in the same order as the data fields in the menu to which they correspond.

A data menu is a template which is designed to help its user edit and display data. The fields in a data menu are previously
defined in aDEFINE M ENU statement.

286




Promula Application Development System User's Manual

Data menus contain a number of data fields to be displayed by the user. In the DEFINE M ENU statement, each data field
is denoted by a series of contiguous "at signs’, @, or "tilde signs"’, ~, equal in number to the desired number of digitsin the
datafield. The data fields are ordered from left to right and from top to bottom of the menu template.

Upon execution, the data menu is displayed on the screen. The values of the data fields are displayed in the places marked
by @ or ~ characters.

Remarks:

The use of the WRITE menu statement is especially helpful if you want to display output data in menu format. You can
send the results of a WRITE menu statement to the printer or to a file using a SELECT OUTPUT and SELECT
PRINTER=ON statement. The default length of the output is 25 lines, this may be modified by a SELECT lines
Statement.

3.7.106 WRITE set
Purpose:

Shows the element codes and element descriptors for a set.

Syntax:

WRI TE set
Remarks:
set isthe identifier of the set being shown.

Examples:

DEFI NE SET
nont h(12)
END SET

DEFI NE VARI ABLE
nc(nont h) "Month Codes" TYPE=STRI N 3)
END VARI ABLE

DEFI NE RELATI ON

ROW nont h, nt)
END RELATI ON
READ nt

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Given the above definitions, the statement

VWRI TE nont h

lists the members (or elements or entries) of the set nont h as shown below

Identifier Description
1 JAN
2 FEB
3 MAR
4 APR
5 VAY

287



Promula Application Development System User's Manual

6 JUN
7 JUL
8 AUG
9 SEP
10 oCcT
11 NOV
12 DEC

3.7.107 WRITE TABLE
Purpose:

Writes atable of several variables on an output device.

Syntax:
WRI TE TABLE(sets), [TITLE(title)] [, FORMAT(rw, cw)],
BODY(["text1",] varl[fntl] [,"text2",] var2[fm2],...)
Remarks:
sets isalist of the identifiers of the sets classifying columns and pages of the variables in the table. The first set will
classify the columns of the table; the other sets, if any, will classify the pages of the table. Sets dimensioning
table variables which are missing from the list will classify the rows of the table. The sets list sets must
contain at least one set (or the number 1 for writing a group of scalar variables) and must be missing those set
identifiers which will classify the rows of the multidimensional table variables.
title isany text you wish to show as atitle for the table. The title may include variables and other format characters
according to the rules defined in the WRITE variables statement.
textl is any text that you wish to precede the values of var 1 as a left-justified subtitle. This text may not contain
variables.
varl istheidentifier of thefirst variable in the table.
frmt 1 isthedesired format for the values of var 1. Usually, thisis used to specify the number of decimal digitsfor var 1.
text2 is any text that you wish to precede the values of var 2 as a left-justified subtitle. This text may not contain
variables.
var2 istheidentifier of the second variable in the table.
fm2 isthedesired format for the values of var 2.
rw isthe number of spaces allocated for row descriptors.
cw isthe number of spaces allocated for table columns.

A table isadisplay or report of severa variables whose values are classified by a common set (or sets). The common sets
classify the columns and pages of the table.

A table has a body and an optional title and format. The body of the table contains the names of the variables whose values
will be displayed as the 'body' of the table. The format specifies the width of the rows and columns of the table.

288




Promula Application Development System User's Manual

Y ou may include as many variables as you wish in the body of atable.

A table may be 'browsed' interactively by using the BROWSE TABLE statement.

Examples:

The following program demonstrates the WRITE TABLE statement:

DEFI NE SET
row(3)
col (6)

END SET

DEFI NE VARI ABLE
a(row,col) "A Data Set"
b(row,col) "B data set"

tot(col) "The Total of A and B"

END VARI ABLE

DEFI NE PROCEDURE wrttab
SELECT LI NES=60

WRI TE TABLE(col), TITLE("The Table Title"),
FORMAT( 20, 10),

BODY(tot::1/"The A Values"/,a::2,/"The B Val ues"/, b)

END PROCEDURE wrttab

a=1
b =2
tot(c
Given the above definitions, the statement

DO wttab

produces the following output.

) = SUMr)( a(r,c) + b(r,c) )

COL( 1)
The Total of A and B 9.0
The A Val ues
ROW 1) 1.00
ROW 2) 1.00
ROW( 3) 1.00
The B Val ues
ROW 1) 2
ROW 2) 2
ROW( 3) 2

The Table Title
CaL(2) COaL(3)

9.0 9.0
1.00 1.00
1.00 1.00
1.00 1.00
2 2
2 2
2 2

N NN

N NN

N NN

3.7.108 WRITE text
Purpose:

Writes text in the Main Screen.

289




Promula Application Development System User's Manual

Syntax:

WRI TE [paran] [(text)]

Remarks:
t ext isaspecification for the text being written and may contain any of the following:
t ext write text enclosed in quotes asis. You can use single quotes within double quotes, or vice
versa, if you want to write quotation marks.
$ begin a new page.
/ begin anew line.
+ suppress automatic carriage return (must be the last character of t ext). This alows you to
concatenate the output of several WRITE text statements.
var[\p:w d] writevalue of avariablevar startingin column p. Allow w spaces for the width of the value
and d spaces for decimals.
A negative weft justifies the value of var .
If wand d are both zero, no trailing blanks will be displayed. This is especialy useful for
writing string type variables that may contain unknown numbers of trailing blanks.
set write the value of the current primary descriptor of set .
vari abl e: | write the identifier of avariable.
variable:L  writethe descriptor of avariable.
variable: D  write the identifier of a variable, followed by a colon, a space, and the descriptor for the
variable
par am isany (or al) of the following:
LEFT to left justify the output (default).
RIGHT to right justify the output.
CENTER to center the output.
CLEAR(s) to pause s seconds, clear the screen, then continue. A negative s causes a pause until
the user strikes any key, and then clears the screen.
CURSOR=t ype to specify the type of the cursor. Three cursor types are possible:
OFF No cursor
STANDARD  bhlinking dash (default)
BLOCK blinking block

GOTOXY (x, y)

to specify x and y screen coordinates for the next write. The visible part of the screen
contains values for x between O at the left and 79 at the right, and values for y between
0 at the top and 24 at the bottom.

You may intermix several t ext and par amspecificationsin the same WRITE text statement.

290



Promula Application Development System User's Manual

Examples:

PROMULA's WRITE statement generates an automatic line-feed after the write. If you want to suppress this action, you
may include a + character asthe last character of output. The example below demonstrates this feature and :0: 0 formatting.

DEFI NE SET
tst(5)
END

DEFI NE VARI ABLE

X

tstn(tst) TYPE=STRI NG 10)
END

SELECT RONtst,tstn)

tstn(i)="# "+i

DEFI NE PROCEDURE wrt
DO t st
X =tst:S
WRITE (tst" x ="x"--fills 8 characters by default. "+)
X = X**2
WRITE ("x**2 = "x:0:0" No trailing blanks with :0:0.")
END t st
END PROCEDURE wrt

Execution of procedure wr t produces the following output.

#1x = 1--fills 8 characters by default. x**2 = 1 No trailing blanks with :0:0.

# 2 x = 2--fills 8 characters by default. x**2 = 4 No trailing blanks with :0:0.

# 3 x = 3--fills 8 characters by default. x**2 = 9 No trailing blanks with :0:0.

# 4 x = 4--fills 8 characters by default. x**2 = 16 No trailing blanks with
:0: 0.

# 5 x = 5--fills 8 characters by default. x**2 = 25 No trailing blanks with
:0: 0.

This example demonstratesthej ust i f y parameter, variable formatting, and several other WRITE text options.

DEFI NE PROCEDURE wr i t xt
a=12345
WRI TE LEFT ("A=" a) CENTER ("A=" a) RIGHT ("A=" a),
o= N1 = = (e "y,
("A=" a:-15:3 "A=" a /,
"A=" a:-25:3 "A=" a /,
"A=" a:-35:3 "A=" a),
CLEAR( - 1) , GOTOXY( 0, 8) , CURSOR=CFF, CENTER(,

CLEAR(-1) Waits for a key press, then "/,
clears "I,
the screen
GOTOXY( 0, 8) puts the cursor on row 8, "I,
in colum O
CURSOR=CFF turns off the cursor "I,
di spl ay
VWRI TE CENTER centers this text "I,
| A= ", a -12.3, " | "y,
")

END PROCEDURE wri t xt

291



Promula Application Development System User's Manual

The procedurewr i t xt writes the lines below, then pauses (because of the CLEAR(-1) option.)

A= 12,345
A= 12,345
A= 12,345
A=12, 345. 000 A= 12, 345
A=12, 345. 000 = 12,345
A=12, 345. 000 = 12,345

If the user presses a key, PROMULA clears the Main Screen and writes the display below.

CLEAR(-1) Waits for a key press, then clears
the screen

GOTOXY(0,8)  puts the cursor on row 8, in colum 0

CURSOR=0OFF turns off the cursor display

WRI TE CENTER centers this text

A= 12, 345. 000

3.7.109 WRITE TEXT
Purpose:

Displays free form text in the Main Screen.

Syntax:

WRI TE TEXT
t ext

ENb”
Remarks:

text isany text that you want to display in the Main Screen.

292



Promula Application Development System User's Manual

The keyword END must be entered starting in column 1 and must be capitalized in order to distinguish it from other
occurrences of the word "end" in the text.

Upon execution, the text will be shown in the Main Screen (Action Window) of the display.

For more details, see the discussion of PROMULA's Basic Windowing capabilities.

3.7.110 WRITE VAL UE segment
Purpose:

Writes the information of a program or program segment to disk. Only the values of the segment variables are written. To
write both code and data values, use the END SEGMENT or END PROGRAM statement.

Syntax:
WRI TE VALUE seg
Remarks:
seg isthe identifier of the segment whose values are being written to disk.
Use the OPEN SEGMENT statement before using the WRITE VAL UE segment statement.
Examples:

The code below opens a segment file on disk called wr val seg. xeq. This segment is given the default name M AIN since it
isatop-level segment. Segment M AIN contains the single variable, a.

OPEN SEGMVENT "wrval seg. xeq" STATUS=NEW

DEFI NE PROGRAM
DEFI NE VARI ABLE
a "The value of variable A ="
END VARI ABLE
END PROGRAM

The effect of the WRITE VALUE segment and READ VALUE segment areillustrated in the dialogs below.

a=10
WRI TE a
The val ue of variable A = 10

The statement, WRITE VALUE MAIN, writes the values of segment M AIN variables (in this case only variable a) in the
segment file on disk called wr val seg. xeq.

WRI TE VALUE MAI N

The value of a variable can be changed by an expression.

a=20
VWRI TE a
The value of variable A = 20

293




Promula Application Development System User's Manual

The READ VALUE MAIN statement will read in the values of the segment M AIN's variables that were stored by the last
WRITE VALUE MAIN statement.

READ VALUE MAI N
WRI TE a
The val ue of variable A = 10

3.7.111 WRITE variable

Purpose:

Shows the information in a variable.

Syntax:

WRI TE var[fnt] [ ORDER(sets)][TI TLE(titl e)][ D SPLAY(dvar)][option]

Remarks:

var

fmt

sets

title

isthe identifier of avariable.

is a format specification to indicate the position of the display, the width of the values displayed, and the
number of decimalsin rea values, asfollows:

\p:wd
where

p is an integer specifying the width in characters for row descriptors. The default width is the width
specifications of the row descriptors related to the set subscripting the rows of the display.

w is an integer specifying the width in characters for each column of values. The default is the width
specification in the definition of var . A negative width parameter left justifies the values of var in each
column.

d isaninteger specifying the number of decimals to display for real numeric values. The default is the
decimal specification (if applicable) in the definition of var. If d is an "E", the values of var will be
displayed in exponentia notation (base-10), and will show seven digits and six decimal places.

If omitted, w and d are the parameters specified in the TYPE specification for var, and p is the width
specifications of the row descriptors related to the set subscripting the rows of the display.

isalist of the sets classifying the values of var . The order of the setsin thislist specifies the structure of the
display: the first set classifies the rows of the display, the second set the columns, and the third to last sets
classify the pages of the display. The keyword ORDER is optional; if it is omitted, sets must follow
immediately after the optional format specification.

is any text you wish to show as a title for the table. The title may include variables, and other format
characters according to the rules defined in the WRITE text statement.

294




Promula Application Development System User's Manual

dvar

option

isavariable used to control the display of variable var . dvar should be subscripted by the set that defines the
rows of the display. PROMULA will display values of var only for those rows corresponding to elements of
dvar that contain nonzero values. See Example in the section on the BROWSE variable statement.

is one of the following WRITE variable options:

TOTAL[(set s)]

PERCENT (set )

CHANGE(n)

GROWTH(n)

MOVING(n)

displays totals over the selected sets along with values of var . If set s is omitted, al
the marginal and grand totals for var will be displayed.

displays the percent distribution of the total over set of var .

The CHANGE option allows the user to show atable of percent change in time series
datafor a previously defined time series dataset or array.

The percent change for timet is computed from values for timet andt -1, wheret and
t- 1 are two consecutive selections of the time set. The selections depend on the current
local setting of the set. They may or may not be consecutive time points. There may be
more than one time unit between them.

Following the keyword, CHANGE, a real number within parentheses is required. It
represents the number of time units to be used in computing percent change. Internally
it isdivided by the difference in time values for selectionst andt - 1.

Suppose values for 1970 and 1975 are used in computing the percent change. That is,
the user has selected these years for computation and output generation. Also she
wants to compute an annual percent change, so one time unit (a year) is designated on
the CHANGE option (CHANGE(1)). The change for 1975 is computed as the
difference in values for 1970 and 1975, divided by the 1970 value, and multiplied by .2
(for annual change). A factor of 100 gives the final result as a percent change from
1970 to 1975 in one year increments.

In the tabular display the words, Percent Change in, are placed in front of the original
title (from the variable definition). If the TITLE option is used with the CHANGE
option no words are prefixed.

The GROWTH option allows the user to show a table of growth rates in time series
data for a previoudly defined time series dataset or array. A time series dataset or array
is one which is defined by a time series set. The growth rate for time t is computed
from valuesfor timet andt- 1, wheret andt -1 are defined as above.

Following the keyword, GROWTH, a real number within parentheses is required and
stands for the number of time units between growth rates. Internally it is divided by the
differencein time values for selectedt andt- 1.

Suppose the user has selected 1970 and 1975 and wishes to show annual growth rates
(GROWTH(1)). The growth rate for 1975 is computed as a quotient — value for 1975
divided by value for 1970 — raised to the power .2 (1.0/(1975-1970)). One is
subtracted from this quantity to get a growth rate and a factor of 100 gives the final
result as a percent rate from 1970 to 1975 in one year increments.

In the tabular display, the words, Growth Rate in, are placed in front of the original
title unlessthe TITLE option is specified.

The MOVING option allows the user to show a table of moving averagesin time series
data for a previously defined time series array. Following the keyword MOVING, an

295



Promula Application Development System User's Manual

Example:

DEFI NE SET
row(3)
col (2)
pag(2)

END SET

DEFI NE VARI ABLE
a(row, col , pag)

END VARI ABLE

a(i,j,k)y=i*j*k

integer, n, within parentheses, gives the number of single unit time increments over
which the moving average is computed. The moving average for time t is computed
from values for time't, .. ., t-(n-1), where the t's are consecutive time points. They
are not consecutive time set selections, based on aloca setting of the time set. Rather,
they are time points as defined initially by the time values related to the set subscripting
var.

Suppose the user has selected a five year moving average (M OVING(5)) based on an
annual time series from 1970 to 1990, and he wishes to show only 1975, 1980, 1985,
1990 moving averages. The average for 1990 is computed as the sum of values from
1986 to 1990 divided by the number of time points as defined initially by the TIME
option on the set definition.

In the tabular display the words, Moving Average for, are placed in front of the
original title unlessthe TITL E option is specified.

"A 3-Di mensi onal Array"

Given the defintions above, the statements

WRITE a TITLE ("Unfornmatted Di splay of variable A")
WRI TE a\ 6: 10: 2( pag, col ,row) TOTAL(col) TITLE(//"Formatted Display of variable A")

produce the following output.

Unformatted Display of variable A

PAG( 1)
COL(1) CO.(2)
ROW 1) 1 2
RON(2) 2 4
ROW( 3) 3 6
PAQ( 2)
COL(1) CO.(2)
RON( 1) 2 4
ROW 2) 4 8
ROW( 3) 6 12
Formatted Display of variable A
ROW 1)
Tot al CaL(1) COaL(2)
PAG( 1) 3.00 1.00 2.00
PAG( 2) 6. 00 2.00 4. 00

296




Promula Application Development System User's Manual

ROW( 2)
Tot al COL( 1) COL(2)
PAG( 1) 6. 00 2.00 4.00
PAG( 2) 12. 00 4.00 8. 00
ROW( 3)
Tot al COL( 1) COL(2)
PAG( 1) 9.00 3.00 6. 00
PAG( 2) 18. 00 6. 00 12. 00

Examples of the other WRITE VARIABLE options are presented with the discussion of the BROWSE VARIABLE
Statement.

297




Promula Application Development System User's Manual

4. PROGRAM AND DATA MANAGEMENT

A program that has too much data or too much code will not fit in your working space and will not run. Fortunately, in
addition to its extensive interface design and modeling features, PROMULA has considerable database management and
program management capabilities. Since these capabilities are required for large scale application development they are
given special attention in this chapter. This chapter is divided into two sections: the first discusses the construction and use
of PROMULA's array database files; the second discusses PROMULA's program segment manager.

4.1 Database Management in PROMULA

In PROMULA, a database is a file containing information. The file's type may be TEXT, ARRAY, or RANDOM.
Databases allow your applications to use disk memory to permanently store a copy of program information. Databases may
be shared by several applications, extended, read from, written to, and manipulated by your computer operating system like
other files.

Text files are the least structured type of database, they are smply a collection of variable length text records. The records
of atext file must be accessed sequentially, so they may be difficult or inefficient to access and update. Furthermore, unless
the information in the text file is carefully structured into a predictable pattern, it will be very difficult to work with. The
lack of internal structurein text filesis an advantage for some applications since the file may be easily extended by simply
appending text at its end.

Random files are more structured than text files. Random files are composed of fixed length binary records. Each record in
the random file is composed of a collection of variables; the variables may be scalars or arrays. The information in a
random file is accessed one record at a time. The records may be accessed at random — by record number, or through
selection keys — by using an inverted file. Random files may be updated by adding records to the end of the random file, or
by re-writing existing records.

Array files are the most structured type of database. Array files are composed of variables, usually arrays, although scalars
may also be present. An array file can also contain sets and relations. The information in an array file is accessed using sets
and variables. Array files are ideally suited for the science and engineering applications that PROMULA is typically used
for. Because of this, text and random files are rarely used for database management in PROMULA. This chapter focuses on
using array files. Readers interested in the other files should refer to Chapter 3 of this Manual. For the remainder of this
chapter, the terms database and array file will be used interchangeably.

Before discussing the actual syntax of PROMULA's data management language, we should review PROMULA's variable
storage types. Here, the phrase "variable storage type" refers to where PROMULA stores each variable's values.

There are three storage types for PROMULA variables:

Fixed Fixed variables are accessed from a fixed space in primary memory (RAM). They are defined with a DEFINE
VARIABLE statement. The values of fixed variables may be saved in a segment file on disk by the END
SEGMENT, END PROGRAM, and WRITE VALUE segment statements. Computations run fastest when
they use fixed variables.

Scratch Scratch variables are accessed from a scratch space in primary memory. They are defined with a DEFINE
VARIABLE SCRATCH statement. Their values can be cleared from memory with a CLEAR statement to
make room for other scratch variables. The values of scratch variables cannot be saved in a segment file on
disk. Computations using scratch variables will be dower than using fixed variables because PROMULA
must do more internal cal culations to access their values.

Disk Disk variables are stored on disk in an array file. They are defined with a DEFINE VARIABLE file
statement. Disk variables are also referred to as database variables. The values of disk variables may be

298



Promula Application Development System User's Manual

accessed directly on disk and they may be accessed dynamically or virtualy in memory via scratch or fixed
variables which are related to them.

There are three methods of accessing the values of disk variables:

In direct access, the file containing the disk variable is opened and the variable is used like a fixed variable.
This is the dowest and least flexible method of accessing disk variables, but it requires no specia
programming. With the direct access method, disk variable values are addressed on disk as needed; any
changes made to the disk variable are saved in the array file. In order to use direct access, the definition of the

In virtual access, an appropriate fixed or scratch variable (called a local variable) is associated with a disk
variable. This local variable is used to access the values of the disk variable on disk. PROMULA manages
transferring the data between the disk and local variable automatically. Virtual access allows programmers to
access disk variables through local variables which are defined in programs that are physically separate from
the ones which defined the disk variables. It also alows programmers to access different disk variables

Direct

disk variable must be in memory.
Virtual

through a single local variable.
Dynamic

In dynamic access, an appropriate local variable is associated with a disk variable. Thislocal variable is used
to access the values of the disk variable in scratch memory. This method offers the same advantages as virtual
access, but it requires the programmer to transfer values between disk and memory via explicit READ DISK
and WRITE DISK statements. Dynamic access also allows programmers to transfer dimensional sections and
subsets of multi-dimensional disk variables between disk and memory. For example, two-dimensional pages
of a three-dimensional disk variable can be accessed through a two-dimensional local variable. Dynamic
access is also faster than either direct or virtual access because a large number of disk variable values may be
quickly transferred between disk and core memory for processing. Local variables used for dynamic access
are like scratch variables in that their values may be cleared from memory viathe CLEAR statement.

4.1.1 Program 1 —Createa'New' Database
The first step in building a PROMULA database is to define an array file, and open it physically on disk. Since we plan to
build a new database, the array file is opened with STATUS=NEW.

DEFI NE FI LE

af "Array file for database 'filea.dba " TYPE=ARRAY

END FI LE
*

* Open af; its physical nane is filea.dba

OPEN af "filea.dba" STATUS=NEW

The next step in building the database is to define the logical structure of the file. Here, the sets, variables, and relations of
the file are physically laid out on disk. To do this, smply use the DEFINE SET file, DEFINE VARIABLE file and

DEFINE RELATION file statements as described in Chapter 3 .

DEFI NE SET af
dr ow( 3)
dcol (4)
dpag(2)

END SET

DEFI NE VARI ABLE af

dat 1(drow, dcol , dpag) "A 3-di mensi onal Array on af"
dat 2(dr ow, dcol ) "A 2-di mensional Array on af"
dat b(drow, dcol , dpag) "A 3-di nensi onal Array on af"

END VARI ABLE

299



Promula Application Development System User's Manual

When a database is first created, PROMULA initializes its variables. numeric variables are given the value zero, and non-
numeric variables are initialized with "empty strings'. Once the database variables are defined, they may be initialized with
your data. We will do so here by using the disk variables themselves (i.e., by direct access).

READ dat 1

111 121 131 141
211 221 231 241
311 321 331 341
112 122 132 142
212 222 232 242
312 322 332 342

dat2(r,c) = dati(r,c,1) * 10
datb = dat1 * 100
The database structure and data can be physically saved, and its file closed with a CLEAR file statement.

CLEAR af

That's all there is to it. The database is defined and ready to use. Of course this is a very simplistic database; it only
contains three small, numeric, array variables. The methodology for constructing larger, more complex databases
containing all types of PROMULA variablesisthe same.

1. Definean array file and open it physically on disk.

2. Usethe DEFINE SET, DEFINE VARIABLE, and DEFINE RELATION statements to define the structure of
the database.

3. Initidize the variables as desired.
4, Closethefile.

Note, you may add new sets, variables, and relations to an existing database by opening it with STATUS=0LD then
following steps 2 through 4 as desired.

4.1.2 Program 2 —Access an 'Old"' Database

After building, the database file is on disk and it may be used by other programs. Using a database makes it possible for
your application to manipulate very large array variables even if they are too large to fit in primary memory. Another
advantage is that database files store a permanent copy of program information separate from the program's segment file,
and this copy may be shared by other applications (including programs written in other languages such as C or FORTRAN)
or even accessed from PROMULA's command mode.

Although it is not required, the program used to build and initialize a database is usually kept in its own file. This "database
build" program need be run only once. Programs that use the database variables are defined in independent source files and
the database variables are accessed virtually or dynamically using local variables.

The first step in creating a program to use an array database on disk is to define an array file to access the database using
the DEFINE FILE statement.

DEFI NE FI LE
filea "Array file for database 'filea.dba " TYPE=ARRAY
END FI LE

Next, define program variables and relate them to the database variables by including a DI SK option in their definitions.

300



Promula Application Development System User's Manual

The DISK option of the DEFINE VARIABLE statement is used to relate local variables to disk variables. The syntax for
this option is described below:

Syntax:

DEFI NE VARI ABLE [ SCRATCH]
var[ (sets)][,"desc"][, TYPE=type], DI SK(file, dvar[(dsets)])
END VARI ABLE

Remarks:

var

sets

desc

type

file

dvar

dsets

isthe identifier of alocal variable. It isthrough var that your application will virtually or dynamically access the
disk variable, dvar .

isthelist of set identifiers specifying the dimensions of the variable var .

isadescriptor for the variable var .

isthe format type of var . Thistype (REAL, INTEGER, STRING), etc. must match the type of dvar . For REAL
type variables, the width and decimal specifications of var are not required to match those of dvar . For all other

types, the width specifications of var and dvar must match.

is the identifier of an array file. In order to access dvar through var, the physical file specified when fil e is
opened must contain dvar .

isthe identifier of the actual disk variable that you want to access through var .

isan optional list of set identifiers, scalar variables or integer constants — one for each dimension of dvar . These
define the local sets and/or pointers which correspond to the disk sets subscripting dvar .

The access method is defined by the specifications of dset s. There are two different ways to specify dset s:

1. For virtual access, omit the specification of dset s. For example

DEFI NE VARI ABLE
var (sets) "desc" DI SK(file, dvar)
END

PROMULA will handle transferring information between the disk and local variable for you. This is the ssimplest
approach, but since it may require a great deal of disk access, it may be too slow for computationally intensive
applications. In virtual access, var must have the same shape and size as dvar ; an exception to thisis overlap mapping
which we will describein alater section.

For dynamic access, dset s is a subscript list — one subscript for each dimension of dvar. The subscripts may be
numeric scalar variables (pointers), numeric constants, or local set identifiers. Y ou may access specific values of dvar
by assigning values to the subscripts and then executing READ DISK or WRITE DISK statements.

In dynamic access, set s defines the size and shape of the subset of dvar that may be dynamically transferred to and
from disk. The dimensions of var may be any subset of the dimensions of dvar . However, the sizes of set s must not
be larger than their corresponding dset s. The rules of correspondence between set s and dset s here are very much
like the rules of correspondence that govern subscripting multidimensional equations — row to row, column to
column, etc.

The code below uses a variety of DISK options to relate local variables to the disk variables in the database f i | ea. dba
which was built in the last section.

301



Promula Application Development System User's Manual

DEFI NE SET
row(3)
col (4)
pag(2)

END SET

* Define fixed variables to use as pointers to disk variable dinensions.
DEFI NE VARI ABLE

rr "A Row Pointer"
cc "A Col um Pointer"
pp "A Page Pointer"

END VARI ABLE

* Define fixed variables that will access disk variables virtually
DEFI NE VARI ABLE

| dat 1(row, col , pag) "A 3-di mensional Array" DI SK(filea, datl)

| dat b(row, col , pag) "A 3-di mensional Array" DI SK(fil ea, datb)

| dat 2(row, col) "A 2-di nmensional Array" DI SK(fil ea, dat?2)
END VARI ABLE

* Define fixed variables that will access disk variables dynamically

DEFI NE VARI ABLE
dsv "Dynami c Scal ar" DI SK(filea,datl(rr,cc, pp))
drv(row) "Dynam c Vector by row' DI SK(fil ea,dat1(row, cc, pp))
dcv(col) "Dynami c Vector by col" DI SK(filea,datl(rr,col, pp))
dpv(pag) "Dynam c Vector by pag" DI SK(filea,datl(rr,cc, pag))
drc(row, col) "Dynamic Array by row and col" DI SK(fil ea, dat1(row, col, pp))
dpc( pag, col) "Dynamic Array by pag and col" DI SK(filea,datl(rr,col, pag))
dpr ( pag, r ow) "Dynamic Array by pag and row' DI SK(fil ea, dat1(row, cc, pag))

END VARI ABLE

* Define scratch variables that will access disk variables dynanmically
DEFI NE VARI ABLE SCRATCH

sdat 1(r ow, col , pag) "Dynam ¢ Array by r ow, col and pag"
DI SK(fil ea, dat 1(row, col , pag))
sdat b(row, col , pag) "Dynam ¢ Array by r ow, col and pag"

DI SK(fil ea, dat b(row, col , pag))
END VARI ABLE

Let's look at these examples of how local variables are related to disk variables starting with the local variables | dat 1,
| dat b and | dat 2.

| dat 1(row, col , pag) "A 3-di mensional Array" DI SK(filea, datl)
| dat b(row, col , pag) "A 3-di mensional Array" DI SK(fil ea, datb)
| dat 2(row, col) "A 2-dinmensional Array" DI SK(fil ea, dat?2)

The above definitions create three array variables. Variable | dat 1 is a three-dimensional array for virtually accessing the
disk variable dat 1. Variable | dat b is similar to | dat 1 except that it is for virtually accessing the disk variable dat b.
Variable| dat 2 isatwo-dimensional array variable for virtually accessing the disk variable dat 2.

Notice that each local variable has the same size, shape, and type as the disk variablesto which it isrelated. Thisisrequired
for correct virtual access. We will discuss how to access subsets and dimensional sections of disk variables shortly.

The values of the three local arrays do not occupy any value storage because the DISK option in their definition tells
PROMULA that they should be accessed virtually from disk. The virtual access method is indicated because the variables
named in their DISK options are not subscripted. Local variables which are used to access disk variables virtualy are
sometimes referred to as virtual variables.

Any changes in the virtual variables are automatically and immediately reflected in the values of the corresponding disk
variables, and vice versa. It is this automatic passing of data to and from disk that makes virtual access sower than

302



Promula Application Development System User's Manual

accessing local variables in memory. Virtual access is acceptable for operations which do not require fast execution, but in
order to use disk variables efficiently, the dynamic access method should be employed.

Now let'slook at some examples of dynamic access starting with variable dsv.

dsv "Dynami c Scal ar" DISK(filea,datl(rr,cc,pp))

Variable dsv isalocal scalar variable related to the disk variable dat 1 on disk. It may be used for dynamic access of the
disk variable dat 1. Here, dynamic access means explicitly transferring data between disk and memory. Dynamic access is
indicated because the reference to dat 1 in the DISK option is subscripted by three items — one for each dimension of the
actual disk variable. Local variables which are used to access disk variables dynamically are sometimes referred to as
dynamic variables.

A vaue of dat 1 on disk may be transferred to dsv by specifying the values of the pointer variables rr, cc, and pp to
indicate which dr ow, dcol , and dpag element to read; then executing a READ DISK statement. Similarly, the current
value of dsv may be written to a specific cell in array dat 1 by specifying the values of the pointer variablesrr, cc, and pp
to indicate which dr ow, dcol , and dpag element to write then executingaWRITE DISK statement. The memory used by
dsv may be cleared for use by other dynamic or scratch variables by a CLEAR statement.

The programmer must make sure that the value of each pointer variable (rr, cc, and pp) is within the range of the disk set
to which it corresponds whenever aREAD DISK or WRITE DISK statement is executed.

Notice that the local scalar dsv and the disk array dat 1 do not have the same structure. Thisis allowed in dynamic access.
It is required, however, that the structure (i.e., scalar, vector, two-dimensional array, etc.) of the local variable matches the
structure of the disk variable as referenced in DISK option. We see in the above example that thisistrue: dsv isascalar;
and the reference to dat 1 in the DISK option, dat 1(rr, cc, pp), isaso ascalar. dat 1(rr, cc, pp) may look like an
array definition to some readers, but sincerr, cc, and pp are scalars, instead of sets, it isindeed a scalar — similar to a
reference to a single cell of a three-dimensional array. The programmer indicates that the actual disk variable is three
dimensional by including three subscripts.

Now let'slook at the three variables dr v, dcv, and dpv.

drv(row) "Dynamic Vector by row' DI SK(filea,datl(row, cc, pp))
dcv(col) "Dynamic Vector by col" DI SK(filea,datl(rr,col, pp))
dpv(pag) "Dynamic Vector by pag" D SK(filea,datl(rr,cc,pag))

The above definitions create three dynamic vector variables. Variable dr v may be used to access an arbitrary r ow-vector of
the disk variable dat 1; variable dcv may be used to access an arbitrary col -vector of dat 1; and variable dpv may be used
to access an arbitrary pag-vector of dat 1. Recall from Chapter 2 that a vector is simply a one-dimensional, or list-
structured variable.

Dynamic access is indicated because the reference to dat 1 in the DI SK option is subscripted — one set or pointer variable
for each dimension of the actua disk variable.

The correspondence between the local sets and the sets dimensioning the actual disk variable is indicated by the placement
of pointers and set identifiers in the reference to dat 1 in the DISK option. Thus, for the variable dpv( pag), dat1 is
referred to asdat 1(rr, cc, pag) indicating that the pag dimension of dpv corresponds to the third dimension of the actual
disk variable. Similarly, for the variable dcv(col ), dat 1 is referred to as dat 1(rr, col , pp) indicating that the col
dimension of dcv corresponds to the second dimension of dat 1 on disk. The dimensions of the disk variable which do not
correspond to a dimension of the local variable are basepointed (i.e., assumed to take on an arbitrary single value) as
indicated by the use of scalar variables in the reference to the disk variable.

A rowvector of dat 1 may be read into dr v by specifying the values of the pointer variables cc and pp to indicate which
dcol and dpag to read, then executing a READ DISK statement. Similarly, the current values of dr v may be writtento a
specific r ow-vector in dat 1 by specifying the values of the pointer variables cc and pp to indicate the dcol and dpag to

303



Promula Application Development System User's Manual

write, then executing a WRITE DISK statement. The memory used by dr v may be cleared for use by other dynamic or
scratch variables by a CLEAR statement. Completely anal ogous techniques may be applied to transfer values for the other
dynamic vector variables.

Notice that the structures of the local vectorsdr v, dcv, and dpv match the structures of the disk variable referred to in their
respective DISK options. For example, the structure of the disk variable referred to in the DISK option for the col -vector
dcv, dat1(rr, col, pp),isasoavector by col . dat 1(rr, col , pp) may look like the definition of a three dimensional
array, but sincerr and pp are scalars, and col isaset, it isindeed a vector by col . Analogous relationships hold for the
other local vectorsdr v and dpv.

The definitions for variables dr ¢, dpr, and dpc are shown below:

drc(row,col) "Dynamic Array by row and col" DI SK(fil ea,dat1(row, col, pp))
dpc(pag,col) "Dynamic Array by pag and col"” DI SK(filea,datl(rr,col, pag))
dpr(pag,row) "Dynamic Array by pag and row' DI SK(filea,dat1(row, cc, pag))

These variables are dynamic two-dimensional arrays. The variable dr ¢ may be used to access ar ow-by-col array of values
for an arbitrary dpag; the variable dpc may be used to access a pag-by-col array of values for an arbitrary dr ow; and the
variable dpr may be used to access a pag-by-r ow array of values for an arbitrary dcol .

As before, dynamic access is indicated because the specification of dat 1 in the DISK option is subscripted — one pointer
or set for each dimension of the actual disk variable.

The correspondence between the local sets and the sets dimensioning the disk variable is indicated by the placement of
pointers and set identifiersin the reference to dat 1 in the DI SK option. Thus for variable dpc( pag, col ), dat 1 isreferred
to as dat 1(rr, col, pag) indicating that the pag and col dimensions of dpc correspond to the third and second
dimensions of dat 1 respectively. Similarly, for variable dpr (pag, row), dat 1 is referred to as dat 1(r ow, cc, pag)
indicating that the pag and r ow dimensions of dpr correspond to the third and first dimensions of dat 1 respectively. The
dimensions of the disk variable which do not correspond to a dimension of the local variable are base-pointed (i.e., assumed
to take on an arbitrary single value) asindicated by the use of scalar variables in the DI SK option.

A row-by-col array of dat 1 on disk may be read into dr ¢ from disk by specifying a value for the pointer variable pp to
indicate which dpag of the array to read then executing a READ DISK statement. Similarly, the current values of dr ¢ may
be written to a specific dpag of dat 1 by specifying a value for the pointer variable pp to indicate which dpag of the array
to write then executing a WRITE DISK statement. The memory used by dr ¢ may be cleared for use by other dynamic or
scratch variables by a CLEAR statement. Completely anal ogous techniques may be applied to transfer values for the other
dynamic array variables. Again, the programmer must make sure that the value of each pointer variable is kept within the
range of the disk set to which it corresponds.

Finally, let'stake alook at definitions of variables sdat 1 and sdat b.

DEFI NE VARI ABLE SCRATCH

sdat 1(row, col , pag) "Dynamic Array by row, col and pag"
DI SK(fil ea, dat 1(row, col, pag))

sdat b(row, col, pag) "Dynamic Array by row, col and pag"
DI SK(fil ea, dat b(row, col, pag))
END VARI ABLE

These variables are dynamic three-dimensional arrays. Variable sdat 1 may be used to access the entire three-dimensional
array of values in the disk variable dat 1, and variable sdat b may be used to access the entire three-dimensional array of
valuesin thedisk variable dat b.

The values are transferred to and from disk by WRITE DISK and READ DISK statements. The variables may be cleared
from memory by a CLEAR statement.

304



Promula Application Development System User's Manual

It is up to the programmer to be sure that there is sufficient memory to bring a dynamic variable into memory either
explicitly with a READ DISK statement or implicitly by using it in an expression. This is especialy true when dealing
with large dynamic variables.

Note that even though these variables are defined as memory type SCRATCH, they are not truly scratch variables because
their values are stored on disk. In fact, using the DI SK option makes the classification of local variables as fixed or scratch
artificial. It is much more meaningful to classify local variables which have a DISK option in their definition as being
either virtual or dynamic.

Before accessing a disk variable, it is necessary to open the file containing it with an OPEN file statement. Be sure not to
use STATUS=NEW when you open an existing datafile or PROMULA will erase the file's contents.

OPEN filea "filea.dba" STATUS=OLD

Once the file specified in the DISK option is physically opened, the disk variables may be accessed. The dialog below
illustrates that the virtual variables do indeed contain the values of the disk variables to which they are related.

WRI TE | dat 1
A 3-di nensi onal Array
PAG( 1)
COL(1) CO.(2) CO.(3) CO.(4)
ROWN 1) 111 121 131 141
ROW( 2) 211 221 231 241
ROW( 3) 311 321 331 341
PAG 2)
COL(1) CO.(2) CO.(3) CO.(4)
ROWN 1) 112 122 132 142
ROW( 2) 212 222 232 242
ROW( 3) 312 322 332 342
WRI TE | dat 2
A 2-di nensi onal Array
COL(1) CO.(2) CO.(3) CO.(4)
ROWN 1) 1,110 1,210 1, 310 1,410
ROW( 2) 2,110 2,210 2,310 2,410
ROW( 3) 3,110 3,210 3, 310 3,410
WRI TE | datb
A 3-di nensi onal Array
PAG( 1)
COL(1) CO.(2) CO.(3) CO.(4)
ROWN 1) 11,100 12,100 13,100 14,100
ROW( 2) 21,100 22,100 23,100 24,100
ROW( 3) 31,100 32,100 33,100 34,100
PAG( 2)
COL(1) COL(2) ©OL(3) COL(4)
ROWN 1) 11,200 12,200 13,200 14,200
ROW( 2) 21,200 22,200 23,200 24,200
ROW( 3) 31,200 32,200 33,200 34,200

305




Promula Application Development System User's Manual

In order to use a dynamic variable which is a dimensional section of adisk variable, it is necessary to assign values to each
pointer variable that corresponds to a disk set. Each pointer value must be greater than or equal to 1 and less than or equal
to the size of the disk setsto which it corresponds. REAL type pointer variables are rounded to the nearest integer.

For example, variable rr is used as a pointer to the set drow( 3) on disk; rr may only take on the values 1, 2, or 3;
variable cc isused as a pointer to the set dcol (4) ; cc may only take onthe values 1, 2, 3, or 4; and variable pp isused as
apointer to dpag(2) ; pp may only take on the values 1 or 2.

The statements below set the dr ow-pointer to 2, the dcol -pointer to 3, and the dpag-pointer to 2.

rr
cc

2
3
pp = 2

Once the pointers contain the desired values, the selected data may be transferred from disk into the associated local
variablesviaaREAD DISK statement.

READ DI SK dsv drv dcv dpv drc dpc dpr sdatl

After the READ DISK statement, the local variables' values have the values of their associated disk variables. The loca
variables may be used like other fixed or scratch variables asillustrated in the dialog below.

*** dsv equals datl(2,3,2)
WRI TE dsv
Dynami ¢ Scal ar 232

*** drv(rec) equals datl(rec, 3, 2)

WRI TE drv
Dynami ¢ Vector by row
ROW( 1) 132 ROW( 2) 232 ROW( 3) 332
*** dcv(col) equals datl1(2,col,?2)
WRI TE dcv
Dynam ¢ Vector by col
COoL(1) 212 COL(2) 222 COL(3) 232
COoL(4) 242
*** dpv(pag) equals dat1(2, 3, pag)
VWRI TE dpv
Dynam ¢ Vector by pag
PAG( 1) 231 PAQ 2) 232

*** drc(row, col) equals dat1(row, col, 3)
WRI TE drc

Dynanmic Array by row and col

CaL(1) CO(2) Co(3) Ca(4)

ROW( 1) 112 122 132 142
ROW 2) 212 222 232 242
ROW( 3) 312 322 332 342

*** dpc(pag, col) equals dat1(2,col, pag)
WRI TE dpc
Dynani ¢ Array by pag and col

COL(1l) CA(2) CO(3) CO(4)

306



Promula Application Development System User's Manual

PAG( 1) 211 221 231 241
PAG( 2) 212 222 232 242

*** dpr(pag, row) equals dat1(row, 3, pag)
VWRI TE dpr
Dynami c Array by pag and row

RON 1) ROAN2) ROW3)
PAG( 1) 131 231 331
PAG( 2) 132 232 332

The values of dat 1 on disk may be modified by changing the values of the associated dynamic local variables then
performingaWRITE DISK statement. For example, the statements

drc(r,c) =r*c
WRI TE DI SK drc

will replace pagetwo (pp = 2) of dat 1 withanr *c product matrix, and the statements

dsv = 1000
WRI TE DI SK dsv

will assign the value 1000 to the pagetwo (pp = 2), columnthree(cc = 3),rowtwo (rr = 2) cell of dat 1. Notice
that the values of the local variable | dat 1 are also modified, since it is virtually related to dat 1, asillustrated in the dialog
below.

WRI TE | dat 1
A 3-di mensi onal Array

PAG( 1)
COL(1) COL(2) CO.(3) CO.(4)
ROW 1) 111 121 131 141
ROW( 2) 211 221 231 241
ROW( 3) 311 321 331 341

PAQ( 2)
COL(1) COL(2) CO(3) CO.(4)
ROW 1) 1 2 3 4
ROW( 2) 2 4 1,000 8
ROW( 3) 3 6 9 12

The dynamic variable sdat 1 is not automatically modified, since it is not virtually related to dat 1. As illustrated below,
sdat 1 till hasthe values of dat 1 that were read in by the previous READ DISK statement.

WRI TE sdat 1
Dynamic Array by row, col and pag
PAG( 1)
COL(1) COL(2) CO(3) CO.(4)
ROW 1) 111 121 131 141
ROW( 2) 211 221 231 241
ROW( 3) 311 321 331 341

307




Promula Application Development System User's Manual

ROA( 1)
ROW( 2)
RON( 3)

PAG( 2)

COL(1)
112
212
312

COL(2)
122
222
322

COL(3)
132
232
332

COL(4)
142
242
342

In fact, the values of the disk variable dat 1 may be "restored” to their "original" state by transferring the values of sdat 1

back to disk withaWRITE DISK statement.

WRI TE DI SK sdat 1

Notice that the values of the local variable| dat 1 are also "restored", since it is virtually related to dat 1 asillustrated in the

dialog below.

WRI TE | dat 1

ROA( 1)
ROW( 2)
RON( 3)

ROA( 1)
ROW( 2)
RON( 3)

A 3-di nensi onal Array
PAG( 1)

CO(1) CO(2) CO(3)
111 121 131
211 221 231
311 321 331

PAG 2)

COL(1) CO(2) CO(3)
112 122 132
212 222 232
312 322 332

COL( 4)
141
241
341

COL( 4)
142
242
342

The dynamic variables associated with dat 1 are not changed unless an explicit READ DISK or CLEAR variable

statement is executed. Asillustrated in the dialog below.

WRI TE dsv
Dynanmi ¢ Scal ar 1, 000

WRI TE drc

ROA( 1)
ROW( 2)
ROW( 3)

Dynani ¢ Array by row and col

COL(1)
1
2
3

COL(2)
2
4
6

COL(3)
3
6
9

COL( 4)
4

8

12

The READ DISK statement transfers values from disk to memory.

READ DI SK dsv drc

WRI TE dsv
Dynami ¢ Scal ar 232

WRI TE drc

308




Promula Application Development System User's Manual

Dynanmic Array by row and col

CoL(1) CO(2) Ca(3) Ca(4)

ROW( 1) 112 122 132 142
ROW 2) 212 222 232 242
ROW( 3) 312 322 332 342

4.1.2.1 Accessing Subsetsof Disk Variables

The dynamic method for accessing array files described above allows a programmer to access dimensional sections of array
variables on disk and to have different orderings for the dimensions of the local and disk variables. For example, the local
variable dpr defined above is apag-by-r ow section of the dr ow-by-dcol -by-dpag disk variable, dat 1.

Sometimes, in addition to accessing dimensional sections and reordering the structure of related disk and local variables,
the programmer wants the local variable to be smaller than the disk variable. In other words, the programmer wants to bring
in a subrange of values from one or more dimensions of the disk variable. The syntax of the DISK option described in the
previous section is not flexible enough to support a floating subrange within a dimension. Consider for example the disk
variable defined below:

DEFI NE SET af
dsub(500) "Survey Subject”
dgst (100) "Survey Question”
dyer (10) "Survey Year"
END SET

DEFI NE VARI ABLE af
dat a(dsub, dgst, dyer) "Survey Responses by Subject, Question, and Year"
END VARI ABLE

Suppose the programmer wants to be able to dynamically access the data for all dsub elements, a single arbitrary dyer
element, and a range, say 20, of the dgst elements. In addition, the programmer wants to access the data through a local
question-by-subject array. With the notation discussed thus far, he/she might try to define the local array as follows:

DEFI NE SET
sub(500) "Survey Subject”
gst (20) "Survey Question”
END SET

DEFI NE VARI ABLE

yp "Year Pointer"

| dat a( gst, sub) "Survey Responses"” Dl SK(af, data(sub, gst,yp))
END VARI ABLE

The problem with this notation is that it will only allow the programmer to access the first 20 elements of set dgst . The
data for dgst elements 21-100 cannot be accessed. Of course, the programmer could try increasing the size of set gst to
100, but that would define a local variable with 500 x 100 = 50,000 values = 200 Kbytes — too large to fit in memory on
most platforms. The programmer might also try using virtual access, but that is slow and does not allow reordering of local
sets. Finally, the programmer might try basepointing the gst dimension of the local array but then he/she could only access
one dgst element at a time. None of these approaches is satisfactory. What is required is a means of having a basepoint
and a local set corresponding to the same disk set. In order to provide for this, an extended DISK option syntax is
available. The extended syntax for defining a dynamic variable that can access a floating subrange of values from a disk
variableis described below.

Syntax:

DEFI NE VARI ABLE [ SCRATCH|

309




Promula Application Development System User's Manual

var[(sets)][,"desc"][, TYPE=type,] DI SK(file,dvar[, BASE(dsetsl)][, ORDER(dsets2)])
END VARI ABLE

Remarks:

var is the identifier of a fixed or scratch variable. It is through var that your application will dynamically access
the disk variable, dvar .

sets isthelist of local set identifiers specifying the dimensions of the variable var .

desc isan optional descriptor for the variable var .

type is the format type of var. Thistype, REAL, INTEGER, STRING, etc. must match the type of dvar . For
REAL type variables, the width and decimal specifications of var are not required to match those of dvar .
For all other types, the width specifications of var and dvar must match.

file is the identifier of an array file. In order to access dvar through var, the disk file specified when fi |l e is
physically opened must contain dvar .

dvar isthe identifier of the actual disk variable that you want to access through var .

dsetsl is an optional list of set identifiers, scalar variables or integer constants — one for each dimension of dvar .
These define the local sets and pointers which correspond to the disk sets subscripting the dvar .

dset s2 is an optional list of set identifiers and asterisks (*) — one for each dimension of dvar. These define the

correspondence between the local sets and the disk sets which actually subscript dvar . Asterisks are used to
indicate which dimensions of the disk variable are basepointed.

Let'stake alook at how to apply this extended syntax to our example.
The database definition is the same:

DEFI NE SET af
dsub(500) "Survey Subject"
dgst (100) "Survey Question”
dyer (10) "Survey Year"
END SET

DEFI NE VARI ABLE af
dat a(dsub, dgst, dyer) "Survey Responses by Subject, Question, and Year"
END VARI ABLE

The programmer wants to be able to dynamically access the data for all dsub elements, a single arbitrary dyer element,
and a range, say 20, of the dgst elements. In addition, the programmer wants to reorder the dimensions of the local
variable asagst -by-sub array. The syntax required for our exampleis

DEFI NE SET
sub(500) "Survey Subject”
gst (20) "Survey Question”
END SET
DEFI NE VARI ABLE
yp "Year Pointer"
qp "Question Pointer"

| dat a( gst, sub) "Survey Responses" Dl SK(af, data, BASE(sub, gp,yp),
ORDER( sub, gst, *))
END VARI ABLE

310



Promula Application Development System User's Manual

The BASE parameter of the DISK option tells PROMULA that the variables qp and yp are basepoints for the second and
third dimensions of the disk variable, and that the set sub corresponds to its first dimension. The ORDER parameter of the
DISK option tells PROMULA that the local sets sub and gst correspond to the first and second dimensions of the disk
variable, and that ranges of values should be accessed from these dimensions. The third subscript of the ORDER parameter
isan asterisk (*) indicating that a single element of the third dimension of the disk variable should be accessed.

Given the above definition, any 20 consecutive dgst elements may be accessed by assigning the basepoint (first-element)
value to variable qp and then executing a READ DISK statement. The programmer must be careful that the value of gp is
at least 1 and no greater than 80 whenever a READ DISK or WRITE DISK is executed. For example, to read in the data
for dgst elements 41 through 60, assign the value 41 to gp and execute aREAD DISK statement.

4.1.3 More About Database M anagement
4.1.3.1 COPY fileIMAGE

It is possible to access a database without having to relate local variables to disk variables. The easiest way to do this is
with the COPY file IMAGE statement. This variation of the COPY statement reads the definition of a database into
memory and makes its sets, variables, and relations available for direct access. For example, if fi | ea. dba isan array file
on disk, the following code would load its definition into memory.

DEFI NE FI LE
af TYPE=ARRAY
END
OPEN af "filea.dba" STATUS=OLD
COPY af | MAGE

4.1.3.2 Thefilevariable and file:set notations

It is possible to directly access disk variables using the notation fi | e: var. Wherefi | e is the identifier of a file which
has been opened to an array file on disk, and var isthe identifier of the database variable you wish to access. Similarly, the
notationf i | e: set may be used to reference setsin an array file.

4.1.3.3 PAGED VIRTUAL and AUTOMATIC DYNAMIC Access

Programs that manipulate database variables through virtual or direct access are easier to write than those that use dynamic
access because explicit READ DISK, WRITE DISK, and CLEAR variables statements are not required. Unfortunately,
virtual and direct access methods can be much slower than dynamic access. It seems the programmer must trade off ease of
programming for execution speed. Thereis, however, away to have the best of both worlds.

As described in Chapter 3, the OPEN file statement can open array files as STATUS=VIRTUAL or
STATUS=DYNAMIC. Files opened STATUS=VIRTUAL use paged virtual access. In this mode, large pieces of the
database are transferred from disk to memory automatically by PROMULA. The efficiency of paged virtual access depends
on the structure of the database variables and the way in which the virtual or disk variables are defined and used by the
program. Files opened STATUS=DYNAMIC use automatic dynamic access. In this mode, the database is read into
memory once — when the file is opened, and then it is written back out once — when thefileis cleared.

Of course, these methods do not provide the same degree of control that is possible when data access is described via the
READ DISK and WRITE DISK statements. Furthermore, paged virtual and automatic dynamic access can require a great
deal of memory and can only be used with small databases or with machines that have alarge or virtual memory.

311



Promula Application Development System User's Manual

4.1.3.4 Increasing PROMULA's Scratch Storage Area.

Paged virtual and automatic dynamic access can only be used with small databases or with machines that have a large
memory. There is, however, a way to increase the paging space (also called scratch storage) used for manipulating dynamic
variables. Thisis done by including a - PS=xx - DS=yy - VS=zz switch on the PROMULA command line.

As mentioned in Chapter 3 (see discussion of SELECT MAP), PROMULA divides your working space into three
partitions, each of which can accommodate about 32 Kbytes of storage. The three partitions are entitled Value Storage,
Definition Storage, and Procedure Storage. The Value partition accommodates data values — the contents of variables.
The Definition partition accommodates the definitions of data structures, sets, variables, menus, etc. The Procedure
partition accommodates executable code — the statements of procedures. Your program is too large whenever any one of
these three storage areas is filled. PROMULA's default memory allocation map is shown in Figure 4-2 below. This diagram
indicates that PROMULA creates a 32K partition for each storage area, and that a scratch storage area whose size is
hardware dependent is available at the "top" of memory.

TOTAL AVAILABLE WORKING SPACE

DEFINITION PROCEDURE VALUE SCRATCH

32K 32K 32K Hardware dependent

The- PS=xx -DS=yy -VS=zz switch alows you to change the allocation of memory. The switch values (xx, yy, and zz)
are integers between 1 and 32. The switches have no effect on machines that employ a virtual memory system.

The amount of storage required by your application can be determined by compiling it with SELECT MAP=ON and
finding the maximum value attained by the storage counters. For example, the listing shown in Figure 4-2 indicates that the
application requires a minimum of 10,011 bytes of value storage, 668 bytes of definition storage, and 92 bytes of procedure
storage. A safe set of allocation switches for this program would be - VS=11 -DS=1 - PS=1. For example, entering the
command line

PROMULA -VS=11 -DS=1 -PS=1 RUN PROGRAM segmnent . xeq

will start PROMULA and load the application stored in the file segment . xeq. PROMULA will allocate a total of 13
Kbytes for the standard memory partitions and at least 83 Kbytes for scratch storage as diagrammed bel ow.

TOTAL AVAILABLE WORKING SPACE

DEF PROC VAL SCRATCH

1K 1K 11K Hardware dependent

4.1.3.5 Automatic READ DISK

PROMULA performs an automatic READ DISK operation whenever a dynamic variable is encountered on the right side
of an equation or displayed with a WRITE or BROWSE statement — unless the variable has already been read into
memory. The automatic READ DISK does not automatically move pointer variables, but it does ensure that dynamic
variables have default values. The default for the basepointed dimensions of dynamic variables is the element indexed by
the value of the pointer related to the disk set.

PROMULA never performs an automatic WRITE DISK of adynamic variable.

4.1.3.6 Overlap Mapping

It is possible to use a single n-dimensional local variable to virtually access several n-1 dimensional disk variables. The
local and disk variables must al be of the same type, and the disk variables must be contiguous in a single database. The

312



Promula Application Development System User's Manual

DISK option should specify the identifier of the first of the contiguous variables to be accessed. For example, the two-
dimensional local variable dat a may be mapped across the disk vectors name, adr 1, adr 2, and phon as shown below:

Database Definition: Fixed Variable Definitions
DEFI NE FI LE DEFI NE FI LE
af TYPE=ARRAY "ARRAY FI LE" af TYPE=ARRAY "ARRAY FI LE"
END FI LE END FI LE
OPEN af "test.dba" STATUS=NEW
DEFI NE SET DEFI NE SET
rec(100) rec(100)
END SET var (4)
DEFI NE VARI ABLE af END SET
name(rec) TYPE=STRI NG 30) " NAME"
adr1(rec) TYPE=STRI NG(30) "Address 1" DEFI NE VARI ABLE
adr2(rec) TYPE=STRI NG 30) "Address 2" data(rec,var) TYPE=STRI NG 30) "Data"
phon(rec) TYPE=STRI NG 30) " PHONE" DI SK( af , nan®)
END VARI ABLE af END VARI ABLE
CLEAR AF

4.2 Program Management in PROMULA

In addition to helping you manage data with array variables and database files, PROMULA can help you manage large
programs with segments and segment files. If your program code or data becomes too large to fit in your working space,
you may divide it into segments that can be transferred to and from disk on an as needed basis. A segment is a program
unit. When a segment is defined, it is explicitly given a name and is implicitly given a place in a program hierarchy.
Program segmentation and segment files allow you to create very large, structured applications that run in environments
with limited memory. Segment files also alow you to keep large program source codes in separate files so they can be
edited, compiled, and debugged separately.

Figure 4-1 is a schematic of how PROMULA organizes a segmented program; the segments could be kept in separate files
on disk or grouped together in a single file. The resultant program has a hierarchical tree structure in which the lower
segments of the tree inherit the structures and procedures of their parent segments.

Main
| —
Segl Seg2 Seg3
Segll Seg21 Seg22 Seg3l
Seg211 Seg221

Figure4-1: Hierarchy of a Segmented Program

4.2.1 A Segmented Program with a Database
Figure 4-2 isthe listing of an artificially large program that has been "segmented” and "databased" in order to fit in a small
working space.

The program in Figure 4-2 has five variables: var, var 1, var 11, var 2, and var 3. Together they require 70,000 words or
280 Kilobytes of storage:

313



Promula Application Development System User's Manual

Storage
Variable Words Bytes
var 50,000 200K
varl 5,000 20K
varll 5,000 20K
var2 5,000 20K
var3 5,000 20K
Total 70,000 280K

How do you fit them in a space of, say, 64 Kilobytes? Easy, break the oversized program into smaller pieces and only bring
in the necessary pieces one at atime. Thisis analogous to using a set of encyclopedias. you work with the one volume that
you are interested in while the rest of them sit on the shelf until they are needed. A mapped compilation listing of the source
code that produced SEGVENT. XEQis shown below.

Figure4-2: A Segmented Program with a Database

Storage Allocation
Proc Line#

Val ue
11
11

R S S S R O

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11
5011
5011
5011
5011
5011
5011
5011
5011
10011
10011
10011
10011
10011
5011
11

kkkkkkhkkhkkhkhkkhkhkkhkkkhkkxkx"

11

Def
24
24

24

24

39

39

39

39
551
573
595
595
595
613
616
622
622
622
622
622
622
622
622
622
639
639
645
645
645
645
645
645
662
662
668
668
668
645
622

622

20
20

62

PROMULA Source Statenent
OPEN SEGVENT ' segnent. xeq', STATUS=NEW
DEFI NE PROGRAM "*****x**xxx** Bagjn Segment MAI N

DEFI NE FI LE
Fi | ex
END
OPEN Fi |l ex "segnent. dba", STATUS=NEW
DEFI NE SET
r ow( 500)
col (10)
page( 10)
END
DEFI NE VARI ABLE Fil ex
var (row, col , page), 'Data for Segnent MAIN
END
DEFI NE PROCEDURE pr oc
OPEN Fi |l ex "segnent. dba", STATUS=CLD
WRI TE( ' You are in Segnent MAIN )
READ SEGVENT Segl, DQ(procl)
READ SEGVENT Seg2, DQ(proc?2)
READ SEGVENT Seg3, DQ(proc3)
END proc
DEFI NE SEGVENT Segl LU R I o o Begl n Segl R I I S S O o L
DEFI NE VARI ABLE
varl(row,col), 'Data for Segnent Segl'
END
DEFI NE PROCEDURE procl
WRI TE(' You are in Segnent Segl')
READ SEGVENT Segll, DQ(procll)
END procl
[EFI NE SEGVENT Segll "hkxkk*x%x Begl n Segll kkhkk khkkkkhkhkhkkkkhkkhkxkx"
DEFI NE VARI ABLE
var1l(row, page), 'Data for Segnent Segll'
END
DEFI NE PROCEDURE procll
WRI TE(' You are in Segment Segll')
END procll
END SEGMENT Segll
END SEGMVENT Segl
DEFI NE SEGMENT Seg2 "******x*x*x* Begjn Seg2

DEFI NE VARI ABLE

314




Promula Application Development System User's Manual

Flgure4 -2 A Segmented Program with a Database

11 622 62 var 2(row, page), 'Data for Segnent Seg2'
5011 639 62 42 END
5011 639 62 43 DEFI NE PROCEDURE pr oc2
5011 645 62 44 WRI TE(' You are in Segnent Seg2')
5011 645 74 45 END proc2

5011 645 75 46 END SEGMVENT Seg2
11 622 62 47 DEFI NE SEGVENT Seg3 "*******xx* Bagin Seg3

R S S I R S

11 622 62 48 DEFI NE VARI ABLE
11 622 62 49 var3(row,col), 'Data for Segnent Seg3'
5011 639 62 50 END
5011 639 62 51 DEFI NE PROCEDURE proc3
5011 645 62 52 WRI TE(' You are in Segnment Seg3')
5011 645 74 53 END proc3

5011 645 75 54 END SEGVENT Seg3
11 622 62 55 END PROGRAM
11 622 62 56 khkkkhkhkkhkhhkhkhhkkhhkhkhkkhkhkxxx End Segrrent AL N % % % % % sk ok ok ok % % % ko ok

The program in Figure 4-2 combines program segmentation and database management to give you what is sometimes
called dynamic memory management. Dynamic memory management means being able to develop and use large programs.
The memory management is achieved in two ways. using database files to store program variables, and using program
segmentation to store program code. When the program is compiled, PROMULA creates two files: the program segments
are physically stored on the disk file named SEGVENT. XEQ The array file Fi | ex isphysically stored on the disk file named
SEGVENT. DBA.

segment.dba segment.xeq
Array Database File Segment File
|_ _I: Main
_‘V;[—_ Segl Seg?2 Seg3

a three-dinensional
di sk variable

Segll

Figure4-3: Hierarchical Structure of SEGVENT. XEQand the database SEGVENT. DBA

This diagram is the organizational chart of the program in Figure 4-2 and its supporting database. The database is stored in
adisk filereferred to as Fi | ex in the program. The five segments are linked into a hierarchy of three levels of inheritance.
The level of inheritance is increasing from top to bottom in the diagram. For example, the segment MAIN inherits no
information from other program segments; it is at inheritance level 0. Segments Seg1, Seg2, and Seg3 inherit information
from segment MAIN; they are at inheritance level 1. Segment Segl1l inherits information from segments Segl and
MAIN; itisat inheritance level 2.

Segment inheritance in the context of the diagram means the following: to access information in a segment of inheritance
level n you must first gain access to the information in the segment at inheritance n-1 that is directly linked to the segment
at level n. In addition, segments at the same level of inheritance cannot share information directly, i.e., they cannot be in
memory simultaneoudy. Parallel segments can share information only through a common parent segment and/or through
shared databases. In the program of Figure 4-2, segment inheritance is manifested in terms of the following possible
working space configurations:

315




Promula Application Development System User's Manual

Segment M AIN may exist in working space alone.

Segment Seg1 can exist in working space with segment M AIN alone or with MAIN and Seg11.

Segment Seg11 can exist in working space only with MAIN and Seg1.

Segment Seg2 can exist in working space only with segment M AIN.

Segment Seg3 can exist in working space only with segment M AIN.

Segments Seg1, Seg2 and Seg3 cannot be in your working space simultaneoudly.

All segments share the information in the master segment M AIN; thus, all segments have access to the information in
the database Fi | ex, which is defined in the M AIN segment.

Nogk,kwNE

The storage allocation for the segmentsis summarized below:

Segment Begins at Ends at
Vaue | Définition [Procedure |Value [ Definition | Procedure
MAIN 11 24 20 11 622 62
Segl 11 622 62 5011 645 79
Segll 5011 645 78 10011 668 92
Seg?2 11 622 62 5011 645 75
Seg3 11 622 62 5011 645 75

Figure 4-4: Storage Allocation Statistics for SEGVENT. XEQ

Notice that the level n segments begin where their parent (level n-1) segments end. The segment MAIN starts with the
DEFINE PROGRAM statement and ends with the END PROGRAM statement. Each of the other segments starts with a
DEFINE SEGMENT statement and ends with an END SEGMENT statement.

Variable var isadisk variable: its values are stored on the array file Fi | ex and, thus, do not take up any RAM space!
This saves you 200 Kilobytes of working space without compromising your ability to access the values of var in your
program. The other four variables— var 1, var 11, var 2, and var 3 — occupy fixed spaces in your working space and are
called fixed variables. Each of these variables requires 20 Kilobytes of RAM and is available to you only if you are
working in the program segment where the variable is defined. For example, var 1 is available in  segments Seg1 and
Segll; var 11 isavailable only in Segl1; var 2 is available only in Seg2; and var 3 is available only in Seg3. If all four
fixed variables were in RAM simultaneously they would require 80 Kilobytes of memory. Separately, however, they each
require 20 Kilobytes only, for a maximum requirement of 40 Kilobytes (when both var 1 and var 11 are in RAM). This
segmentation saves you 40 Kilobytes of RAM space.

Thus, in this example you only require 40 Kilobytes of RAM to use 280 Kilobytes of data values.

Figure 4-5 below contains a sample interaction with the program SEGVENT. XEQ

Figure4-5. An Interactive Run with a Segmented Program

PROMULA? RUN PROGRAM segnent . xeq

PROMULA? DO proc

You are in Segnent MAIN
You are in Segnent Segl
You are in Segment Segll
You are in Segnent Seg2
You are in Segrment Seg3

PROMULA? AUDI T SET
Identifier Description
ROW

coL

PAGE

316




Promula Application Development System User's Manual

Figure4-5: An Interactive Run with a Segmented Program

PROMULA? AUDI T VARI ABLE
Identifier Description

VAR Data for Segment MAIN
VAR3 Data for Segnment Seg3
var = 10

PROMULA? SELECT row(450-455), col (4-8), page(1)
PROMULA? WRI TE var

A Segnented Program w th a Dat abase Page 1

Data for Segment MAIN

PAGE( 1)

COL(4) COL(5) ©COL(6) COL(7) COL(8)
ROW( 450) 10 10 10 10 10
ROW( 451) 10 10 10 10 10
ROW( 452) 10 10 10 10 10
ROW( 453) 10 10 10 10 10
ROW( 454) 10 10 10 10 10
ROW( 455) 10 10 10 10 10

4.2.2 Multi-Segment Programsin Separate Disk Files

If the segments of your program become very large, or if you just want the convenience of being able to edit and debug

them independently, you can store each segment in a separate file.

If you choose to do this, there are several important rules you must follow.

1. In order to use any structures defined in a segment, you must first physically open the disk file that contains the

segment then read in the segment by executing OPEN SEGM ENT and READ SEGMENT statements.

2. If you change and recompile a parent segment, you must also recompile all the segments "under" it. Lower level
segments and parallel segments, however, can be recompiled without having to recompile their parent segments.

3. After returning from a lower level segment, you must reopen the parent segment before you can write to it with a

WRITE VALUE segment statement.

Example:

The following example shows how the source code of SEGVENT. XEQ would have to be modified in order for each segment

to residein a separate disk file.

The file containing segment MAIN is shown below. Notice that it contains a DEFINE PROGRAM statement but no

DEFINE SEGMENT statement.

Procedure proc in this multi-file version of SEGVENT. XEQ has been modified by adding the appropriate OPEN

SEGMENT statements before the READ SEGMENT statements that execute the lower level segments.

MAIN
OPEN SEGVENT "segnent. xeq" STATUS=NEW
EIE R O O Begl n NBI n Segn«ent EE R I I O S O
DEFI NE PROGRAM " A Segnented Program w th a Dat abase"

317



Promula Application Development System User's Manual

DEFI NE FI LE
Fi | ex
END
OPEN Fi |l ex "segnent. dba", STATUS=NEW
DEFI NE SET
r ow( 500)
col (10)
page( 10)
END
DEFI NE VARI ABLE Fil ex
var (row, col , page), 'Data for Segnent MAIN
END
DEFI NE PROCEDURE pr oc
OPEN Fi |l ex "segnent. dba"
WRI TE( ' You are in Segnent MAIN )
OPEN SEGVENT "segl. xeq"
READ SEGMVENT Segl, DQ(procl)
OPEN SEGVENT "seg2. xeq"
READ SEGMVENT Seg2, DQ(proc?2)
OPEN SEGVENT "seg3. xeq"
READ SEGVENT Seg3, DQ(proc3)
CLEAR filex
END proc
R R S S o End NB.II’] Segn-ent EE R I I O I O O
END PROGRAM
STOP

The files containing the segments segl, seg2, and seg3 are shown below. Notice that the file containing segment M AIN
is opened and read at the top of each of these files so that the definitions in segment MAIN can be used. This implicitly
putssegl, seg2, and seg3 a inheritance level 1 under segment MAIN .

segl
OPEN SEGVENT "segnent. xeq" STATUS=0OLD
READ SEGVENT MAI N
OPEN SEGVENT "segl. xeq" STATUS=NEW
DEFI NE SEGVENT Seg1l
kkhkkhkhkkkkhkkhkhkhkkkkhhkkx Begl n Segn-ent l kkkkhkhkkkkhkkhkhkhkkkhkhkhkkkk*k
DEFI NE VARI ABLE
varl(row,col), 'Data for Segnent Segl'
END
DEFI NE PROCEDURE procl
WRI TE(' You are in Segnment Segl')
OPEN SEGVENT "segll. xeq"
READ SEGVENT Segll, DQ(procll)
END procl
kkkhkhkkkkhkkhkhkhkkkkhhkkk End Segn-ent Segl kkhkkhkhkkkkhkhkhkhkkhkkhkhkhkxkk*k
END SEGVENT Segl
STOP
seg2

OPEN SEGVENT "segnent. xeq" STATUS=OLD
READ SEGVENT MAI N
OPEN SEGVENT "seg2. xeq" STATUS=NEW

DEFI NE SEGVENT Seg2
R R S S o Begl n Segrmnt Segz R O O o
DEFI NE VARI ABLE
var 2(row, page), 'Data for Segnent Seg2'
END
DEFI NE PROCEDURE pr oc2
WRI TE(' You are in Segnent Seg2')

318



Promula Application Development System User's Manual

END proc2
kkhkkhkhkkkkhkkhkhkhkkkkhhkkk*kx End SegI’TEI’]t Segz kkkkhkhkhkkhkkhkkhkhkhkkkkhhkkk
END SEGVENT Seg2
STOP

seg3
OPEN SEGVENT "segnent. xeq" STATUS=OLD
READ SEGVENT MAI N
OPEN SEGVENT "seg3. xeq" STATUS=NEW

DEFI NE SEGMVENT Seg3
kkhkkhkkkkhkkhkhkhkkkkhkhkkkk Begl n Segl’TEnt SegS kkkkhkhkhkkkhkkhkhkhkkkk*k
DEFI NE VARI ABLE
var3(row, col), 'Data for Segment Seg3'
END
DEFI NE PROCEDURE proc3
WRI TE(' You are in Segnent Seg3')
END proc3
R R S S o End Segrmnt Segs R R I O
END SEGVENT Seg3
STOP

The file containing seg11 is shown below. Notice that both parent segments: segl and MAIN are opened and read at the
top of thisfile. Thisimplicitly putsseg11 at inheritance level 2 under segments M AIN and seg1.

segll

OPEN SEGVENT "segnent. xeq" STATUS=OLD
READ SEGVENT MAI N

OPEN SEGVENT "segl. xeq" STATUS=0OLD
READ SEGVENT segl

OPEN SEGVENT "segll. xeq" STATUS=NEW

DEFI NE SEGVENT Segl1l
EE R R O O O O Beg| n Segn-ent Segll kkkkkkkhkkhkhkkkk*%
DEFI NE VARI ABLE
var11(row, page), 'Data for Segnent Segll'
END
DEFI NE PROCEDURE procll
WRI TE(' You are in Segnent Segll')
END procll
R R S S o End Segn«ent Segll R I b O S O
END SEGMVENT Segll
STOP

The STOP statements at the end of all the files are used during multi-file compilations; they return control to a "job file"
that contains a series of RUN statements that compile the segments of the program in the right order. A job file can be a
convenient way to automatically compile all segments after you have changed segment M AIN.

A simple sequential job file is shown below. Your own job files can be more elaborate allowing you to select individual
segment files for compilation. The important thing to remember is that if you compile a parent segment, all segments
"under" it must also be compiled in order to insure that the beginnings and endings of Value, Definition, and Procedure
storage for each segment are correct and consistent.

VRl TE( " RUNNI NG segnent . prnt)
RUN segnent . prm

WRI TE(" RUNNI NG segl. prnt')
RUN segl. prm

WRI TE(" RUNNI NG segll. prni)
RUN segll. prm

WRI TE(" RUNNI NG seg2. prnt')

319



Promula Application Development System User's Manual

RUN seg2. prm
WRI TE( " RUNNI NG seg3. prnt)
RUN seg3. prm
STOP PROMULA

320



Promula Application Development System User's Manual

5. CONFIGURING PROMULA

Most of PROMULA's system options may be configured by each application through the SELECT option statement.
However, the physical configuration of PROMULA's graphics modes may only be controlled through PROMULA's
graphics configuration program PCONFIG.XEQ. This program is a PROMULA application that provides a menu-driven
interface for configuring each of PROMULA's graphics modes to your hardware's capabilities and your preferences so that
you can produce plots on your screen and printer. The program provides the means to select predefined graphics
configurations and to create and manage custom graphics configurations for hardware that does not work under one of the
predefined configurations. Typically, you will only have to configure PROMULA's graphics once — when you first install
PROMULA on your system.

Currently, PROMULA supports graphics configurations for the following types of devices:

CGA medium resolution 3-color graphics adapter
CGA high resolution black & white graphics adapter
EGA 16 color high resolution graphics adapter

VGA 16 color high resolution graphics adapter
IBM/Epson printer, high resolution, landscape
IBM/Epson printer, high resolution, portrait
IBM/Epson printer, medium resolution, landscape
IBM/Epson printer, medium resolution, portrait

. IBM/Epson printer, CGA high resolution screen dump
10. IBM/Epson printer, CGA medium resolution screen dump
11. HP LaserJet Il printer, high resolution, landscape

12.  HP LaserJet Il printer, medium resolution, landscape
13. HP LaserJet Il printer, high resolution, portrait

14. HP LaserJet Il printer, medium resolution, portrait

15. VT 330 SIXEL graphics

16. VT 240 REGIS graphics

17.  IBM/Epson printer, VGA high resolution screen dump
18. LNO3 Plus Printer, landscape

©ONOOA~WNE

PROMULA's default graphics configuration is as follows:

MEDIUM mode CGA medium resolution 3-color graphics adapter
HIGH mode CGA high resolution black & white graphics adapter
PLOTTER mode IBM/Epson printer, high resolution, landscape

5.1 Using the Graphics Configuration Program

There are two primary functions of the graphics configuration program:

1. Selecting a graphics configuration to be used by one of PROMULA's graphics modes.
2. Managing custom graphics configurations.

5.1.1 Selecting Graphics Configurations

Configuring PROMULA's graphicsis a simple two-step process. First, you select the graphics mode you wish to configure.
Then you select the graphics configuration you want to assign to the selected mode.

321



Promula Application Development System User's Manual

Although it is possible to assign any device to any graphics mode, only configurations supported by your hardware will
perform properly. If you misconfigure PROMULA's graphics, it is likely that plots on screen or on the printer will not look
right, or your computer may lock up when PROMULA tries to produce a plot. If either of these events occurs, first try
pressing the Esc key; if that does not help, reboot your computer and reconfigure PROMULA's graphics for a device that is
supported by your hardware.

The following screens illustrate this sequence of steps. First, you run the program PCONFIG.XEQ. The screen below
shows the main menu of the graphics configuration program.

PROVULA GRAPHI CS CONFI GURATI ON' PROGRAM

MAIN MENU

F1 Exit to PROMULA Main Menu
F2 Create, Mdify, or Delete Custom G aphics Configurations
F3 Configure G aphics Mdes

F4 Test PROMULA G aphics

Choosing the third option off the main menu will bring up the graphics mode selection screen shown below. Use the arrow
keysto highlight the graphics mode you wish to configure and press Enter to select it.

322



Promula Application Development System User's Manual

Sel ect the graphics node you wish to configure, or press [End].

Identifier Description

1 MEDI UM
2 H &H
3 PLOTTER

End: Exit Arrows PgUp PgDn Home: Move Enter: Select

After selecting a graphics mode to configure, the graphics configuration selection screen is displayed. Use the arrow keysto
highlight the graphics configuration you want to assign to the selected graphics mode and press Enter to select it.

Sel ect a configuration for H GH graphics node, or press [End].
I dentifier Description
1 CGA nedium resol uti on 3-col or graphics
2 CGA high resol ution black & white graphics
3 EGA 16 col or high resolution graphics
4 VGA 16 col or high resol ution graphics
5 | BM Epson printer, high resolution, |andscape
6 | BM Epson printer, high resolution, portrait
7 | BM Epson printer, mediumresolution, |andscape
8 | BM Epson printer, nmediumresolution, portrait
9 | BM Epson printer, CGA high resolution screen dunp
10 | BM Epson printer, CGA nediumresol ution screen dunp
11 HP LazerJet |l printer, high resolution, |andscape
12 HP LazerJet Il printer, mediumresolution, |andscape
13 HP LazerJet |l printer, high resolution, portrait
14 HP LazerJet Il printer, mediumresolution, portrait
15 VT 330 SI XEL graphics
16 VT 240 REG S graphics
17 | BM Epson printer, VGA resolution screen dunp

End: Exit Arrows PgUp PgDn Home: Move Enter: Select

After making these two selections, your new graphics configuration will be written permanently in the PROMULA
configuration file, PROMULA.PAK, and you will be returned to the graphics configuration program main menu where
you may exit the program and use PROMULA.

323



Promula Application Development System User's Manual

5.1.2 Managing Custom Graphics Configurations

Y ou can use the graphics configuration program to create new graphics configurations that satisfy the requirements of your
hardware and/or your preferences. Changing the line colors and patterns requires no technical knowledge, but changing plot
sizes, especialy for printers, requires detailed technical information about your printer's data transfer protocol.

Currently, the following items are used to define a PROMULA graphics configuration:

1

10.

Device Descriptor

This is a string of up to sixty characters that describes the configuration definition. It is used only for descriptive
purposes, and its value does not affect the behavior of graphicsin any way.

Devicetype
Thisis acode describing the type of output device that will be used for plots.

video

raster-printer, e.g., HP LaserJet
vector-video, e.g., VT 240 Regis Graphics
raster-video, e.g., VT 330 Sixel Graphics
vector-printer, e.g., a Pen Plotter

A WNPEFO
I L T T

Horizontal text pixel width

This is the width in pixels of each character of horizontal text that may appear with a plot. Text on plots uses an
internally defined fixed-width font.

Horizontal text pixel height

Thisisthe height in pixels of each character of horizontal text that may appear with a plot.
Vertical text pixel width

Thisisthe width in pixels of each character of vertical text that appears with the plot.
Vertical text pixel height

Thisisthe height in pixels of each character of vertical text that appears with the plot.
Total width in pixels

Thisisthe total width of the plot areain pixels.

Total height in pixels

Thisisthe total height of the plot areain pixels.

Total width in standard units

Thisisthe total width of the plot, including accompanying text, in standard units, typically inches.

Total height in standard units

324



Promula Application Development System User's Manual

11.

12.

Thisisthe total height of the plot, including accompanying text, in standard units, typically inches.

Border color code

In LINE and VALUES plots, thisisthe color to be used for the border around the plot and all text displayed with the
plot. In al other plot styles (i.e., PIE-CHARTS, MARKED-POINT PLOTS, and BAR PLOTYS), the entire image will
be drawn in this color.

Linecolor codes

These six values specify the colors to be used for the plotted curves in LINE and VALUES plots. The colors
available depend on your hardware. The color codes used by PROMULA are listed below.

SIXTEEN-COLOR GRAPHICS CONFIGURATIONS.

13.

14.

0 = BLACK 1 = BLUE 2 = GREEN 3 = CYAN

4 = RED 5 = PURPLE 6 = YELLOW 7 = VW TE

8 = GREY 9 = LT BLUE 10 = LT GREEN 11 = LT
CYAN

12 = LT RED 13 = LT PURPLE 14 = LT YELLOW 15 = LT
VWH TE

THREE-COLOR GRAPHICS CONFIGURATIONS.
1=CYAN 2=MAGENTA 3=VWH TE

For monochrome monitors and printers the only valid color codeis 1.
Line patterns

These six strings of twenty-character values specify the patterns to be used for the plotted curves in LINE and
VALUES plots. The default line patterns are shown below:

SIXTEEN-COLOR THREE-COLOR MONOCHROME MONITORS
MONITORS MONITORS AND PRINTERS
HOOOKKOOKIONXKXK HOOOKKOIOKIKKNXKX XOOKIOKIKINXKX
XOOOKOOKIINXKX XOOOIOOKIKKXKXK XXX

HXKKIKXIKHKIXXKXK HOXXKIKXIKHKIXXKXK XX XXX XXX
XXXKIKXIKHKIXXKXK XXX XXXX XXXX XXXX
HOOOKKOOKIOKNXKX XXXX XXXX XX XX XX XX
HOOOKIKIONXKX XXXX XXXX XXX X XXXX X

Video BIOStype code

This decimal number is used to tell PROMULA the appropriate settings to use for your graphics monitor. For
example, the video BIOS type codes for PROMULA's four video configurations are listed below:

Configuration Code
1. CGA medium resolution 3-color graphics 4
2. CGA high resolution black & white graphics 6
3. EGA 16 color high resolution graphics 16
4.  VGA 16 color high resolution graphics 18

325



Promula Application Development System User's Manual

For additional information on the Video BIOS type code consult Milton, R. Programmers Guide to PC and PS/2
Video Systems Microsoft Press; Redmond, Washington (1987)

15. Raster Orientation: O=portrait, 1=landscape
For raster devices such as printers, this code specifies the orientation of the image.

16. Raster bandwidth

17. Raster horizontal bit multiplier
18. Raster vertical bit multiplier
19. Ragster initialization string

20. Raster start-of-linestring

21. Raster end-of-linestring

22. Raster end-of-plot string

Items 16 through 22 are used to control raster devices (e.g., printers). See your printer manual for the values of these
parameters.

23.  Vector Draw linestring

24. Vector WriteHorizontal Text String
25.  Vector Write Vertical Text String
26. Vector draw Circle String

Items 23 through 26 are used to control vector devices (e.g., pen plotters). See your plotter manual for the values of these
parameters.

After determining the values of the items to include in a custom graphics definition, you may use the graphics configuration
program to create a configuration that matches these specifications.

First load the program and select option 2 off the main menu. This brings up the custom graphics management menu shown
below.

Hrom this menu, you can create a new custom graphics configuration, or modify or delete an edsting one. To create a new
donfiguration, select option 2 from this menu. Thiswill bring up the configuration selection scregn.

ext, select a configuration to use as the basis for the new one.

326



Promula Application Development System User's Manual

Select a configuration to use as the basis for the new one, or press [End].

dentifier Description

I

1 CGA medi um resol ution 3-col or graphics

2 CGA hi gh resol uti9on black & white graphics

3 EGA 16 col or high resolution graphics

4 VGA 16 col or high resol ution graphics

5 | BM Epson printer, high resolution, |andscape

6 | BM Epson printer, high resolution, portrait

7 | BM Epson/ printer, mediumresolution, |andscape

8 | BM Epson printer, mediumresolution, portrait

9 | BM Epson printer, CGA high resolution screen dunp
10 | BM Epson printer, CGA nediumresolution screen dunp
11 HP LaserJet Il printer, high resolution, |andscape
12 HP LaserJet Il printer, nediumresolution, |andscape
13 HP LaserJet Il printer, high resolution, p9ortrait
14 HP laserJet Il printer, mediumresolution, portrait
15 VT 330 SI XEL graphics

16 VT 240 REG S graphi cs

17 | BM Epson printer, VGA resolution screen dunp

End: Exit Arrows PgUp PgDn Hone: Mve Enter . Select

After selecting atemplate configuration, you can edit its descriptor to give it a unique name.

Edit the description of graphics configuration #19

GCD(19) CGA hi gh resolution black & white graphics

Enter value or End? NEWCGA H RES (SMALL PLOT)

Last, enter the parameters associated with the new configuration using PROMULA's interactive data editor on the screen
below.

327



Promula Application Development System User's Manual

NEW CGA HI RES (SMALL PLOT)

Devi ce type: 0-video; 1, 3=raster; 2, 4=vect or 0
Horizontal text pixel wdth 8
Hori zontal text pixel height 8
Vertical text pixel wdth 8
Vertical text pixel height 8
Total width width in pixels 500
Total height in pixels 200
Total width in standard units 16
Total height in standard units 12
COLOR CODES: 01=BLACK
Background col or code 1
LI NE COLORS
(1) 1

End: Exit Fn Shift-Fn PgUp PgDn Hone Arrows: Select Enter: Edit

The custom configuration management menu also offers the options of modifying or deleting existing custom graphics
configurations. If you choose to modify an existing configuration, the list of existing custom graphics configurations will be
displayed and you may select one for editing. If you choose to delete an existing configuration, the list of existing custom

graphics configurations will be displayed and you may select one to be del eted.

5.1.3 Testing PROMULA Graphics

The graphics configuration program also offers the opportunity to test graphics configurations. Selecting the fourth option
from the configuration program's main menu brings up the plot testing control screen. From this screen, you may change

the graphics modes or generate the various types of PROMULA plots.

328



Promula Application Development System User's Manual

Select the style of plot you wish to view, or press END.

CURRENT GRAPHICS MODE | S HIGH

o
|

= CHANGE GRAPHI CS MCDE

NORVAL
LINE
SCATTER
BAR
STACK

Pl ECHART
VALUES

~No o wWN -
LI A A | I Y A |

or press [End] to Exit

329




	1.  INTRODUCTION
	1.1  Organization of the Manual
	1.2  What is PROMULA?
	1.3  PROMULA: Language Highlights
	1.3.1  Total Programming Environment
	1.3.1  Structured Notation
	1.3.2  Language Tutorial
	1.3.3  Language Course
	1.3.4  Tutorial Writer
	1.3.5  Menu Manager
	1.3.6  Data Editor
	1.3.7  Report Generator
	1.3.8  Graphics
	1.3.9  Command Mode
	1.3.10  Compilation Mode
	1.3.11  Conversational Mode
	1.3.12  Multidimensional Data Structures
	1.3.13  Array or Matrix Equations
	1.3.14  Equation Solver
	1.3.15  Variable Management System
	1.3.16  Program Management System
	1.3.17  Dynamic Simulation
	1.3.18  Windows
	1.3.19  Mathematical and Statistical Functions
	1.3.20  Command-Line Recall
	1.3.21  Multi-platform Performance


	2.  PROMULA BASICS
	2.1.  The PROMULA Application Development System
	2.1.1.  Starting PROMULA
	2.1.2.  The PROMULA Main Menu
	2.1.3.  Running Interactive Programs in Batch
	2.1.4.  PROMULA Keyboard Conventions
	2.1.5.  Line Editing
	2.1.6.  Printer Control

	2.2.  PROMULA Application Programming
	2.2.1.  Data Definition
	2.2.2.  Program Control
	2.2.3.  Data Manipulation
	2.2.4.  Report Generation
	2.2.5.  Interface Design
	2.2.6.  Application Programming Summary


	3.  PROMULA LANGUAGE REFERENCE
	3.1  The PROMULA Nouns
	3.1.1  Equation
	3.1.2  Expression -- Arithmetic
	3.1.3  Expression -- Boolean
	3.1.4  Expression -- Character
	3.1.5  Expression -- Functional
	3.1.6  Expression -- Logical
	3.1.7  Expression -- Numeric
	3.1.8  Expression -- Relational
	3.1.9  File
	3.1.10  Function
	3.1.11  Menu
	3.1.12  Numeric Precision
	3.1.13  Parameter
	3.1.14  Procedure
	3.1.15  Program
	3.1.16  Relation
	3.1.17  Segment
	3.1.18  Set
	3.1.19  Statement
	3.1.20  System
	3.1.21  Table
	3.1.22  Time Parameters
	3.1.23  Variable
	3.1.24  Window -- Basic
	3.1.25  Window -- Advanced

	3.2  Statement Format
	3.3  Commas and Blanks
	3.4  Line Length
	3.5  Line Continuation
	3.6  Format of PROMULA Statement Descriptions
	3.7  The PROMULA Statements
	3.7.1  ASK CONTINUE
	3.7.2  ASK...ELSE
	3.7.3  AUDIT file
	3.7.4  AUDIT SET
	3.7.5  AUDIT VARIABLE
	3.7.6  BREAK procedure
	3.7.7  BROWSE COMMENT
	3.7.8  BROWSE DIALOG
	3.7.9  BROWSE FILE
	3.7.10  BROWSE function
	3.7.11  BROWSE menu
	3.7.12  BROWSE SET
	3.7.13  BROWSE set
	3.7.14  BROWSE TABLE
	3.7.15  BROWSE TEXT
	3.7.16  BROWSE TOPIC
	3.7.17  BROWSE VARIABLE
	3.7.18  BROWSE variable
	3.7.19  CLEAR file
	3.7.20  CLEAR variable
	3.7.21  CLEAR WINDOW
	3.7.22  [COMPUTE] Equation
	3.7.23  COPY
	3.7.24  DEFINE DIALOG
	3.7.25  DEFINE FILE
	3.7.26  DEFINE FUNCTION
	3.7.27  DEFINE LOOKUP
	3.7.28  DEFINE MENU
	3.7.29  DEFINE PARAMETER
	3.7.30  DEFINE PROCEDURE
	3.7.31  DEFINE PROGRAM
	3.7.32  DEFINE RELATION
	3.7.33  DEFINE SEGMENT
	3.7.34  DEFINE SET
	3.7.35  DEFINE SYSTEM
	3.7.36  DEFINE TABLE
	3.7.37  DEFINE VARIABLE
	3.7.38  DEFINE WINDOW
	3.7.39  DO CORRELATE
	3.7.40  DO DESCRIBE
	3.7.41  DO DIRECTORY
	3.7.42  DO file
	3.7.43  DO  IF
	3.7.44  DO IF END
	3.7.45  DO IF ERROR
	3.7.46  DO IF ESCAPE
	3.7.47  DO IF HELP
	3.7.48  DO IF KEYPRESS
	3.7.49  DO IF NULL
	3.7.50  DO INVERT
	3.7.51  DO LSOLVE
	.7.52  [DO] procedure
	3.7.53  DO REGRESS
	3.7.54  DO set
	3.7.55  DO UNTIL
	3.7.56  DO WHILE
	3.7.57  EDIT menu
	3.7.58  EDIT TABLE
	3.7.59  EDIT variable
	3.7.60  END
	3.7.61  END PROGRAM
	3.7.62  END SEGMENT
	3.7.63  LEVEL
	3.7.64  OPEN file
	3.7.65  OPEN SEGMENT
	3.7.66  OPEN WINDOW
	3.7.67  PLOT
	3.7.68  RATE
	3.7.69  READ DISK
	3.7.70  READ file
	3.7.71  READ function
	3.7.72  READ menu
	3.7.73  READ SEGMENT
	3.7.74  READ set
	3.7.75  READ VALUE segment
	3.7.76  READ variable
	3.7.77  READ (variables)
	3.7.78  RUN
	3.7.79  RUN COMMAND
	3.7.80  RUN COMPILER
	3.7.81  RUN DOS
	3.7.82  RUN EDITOR
	3.7.83  RUN PROGRAM
	3.7.84  RUN SOURCE
	3.7.85  SELECT ENTRY
	3.7.86  SELECT FIELD
	3.7.87  SELECT file
	3.7.88  SELECT indirect
	3.7.89  SELECT menu
	3.7.90  SELECT option
	3.7.91  SELECT PULLDOWN
	3.7.92  SELECT RELATION
	3.7.93  SELECT set
	3.7.94  SELECT SET
	3.7.95  SELECT set IF
	3.7.96  SELECT VARIABLE
	3.7.97  SORT
	3.7.98  STOP
	3.7.99  STOP PROMULA
	3.7.100  TIME
	3.7.101  WRITE COMMENT
	3.7.102  WRITE DISK
	3.7.103  WRITE file
	3.7.104  WRITE function
	3.7.105  WRITE menu
	3.7.106  WRITE set
	3.7.107  WRITE TABLE
	3.7.108  WRITE text
	3.7.109  WRITE TEXT
	3.7.110  WRITE VALUE segment
	3.7.111  WRITE variable


	4.  PROGRAM AND DATA MANAGEMENT
	4.1  Database Management in PROMULA
	4.1.1  Program 1 – Create a 'New' Database
	4.1.2  Program 2 – Access an 'Old' Database
	4.1.3  More About Database Management

	4.2  Program Management in PROMULA
	4.2.1  A Segmented Program with a Database
	4.2.2  Multi-Segment Programs in Separate Disk Files


	5.  CONFIGURING PROMULA
	5.1  Using the Graphics Configuration Program
	5.1.1  Selecting Graphics Configurations
	5.1.2  Managing Custom Graphics Configurations
	5.1.3  Testing PROMULA Graphics



